如图,在 中, , ,点 , 分别在 , 上,且 .
(1)如图1,求证: ;
(2)如图2, 是 的中点,求证: ;
(3)如图3, , 分别是 , 的中点,若 , ,求 的面积.
如图,在 中, 于点O,交BC于点E, , 交DE于点F,连接 ,点H为线段 上一点,连接 .
(1)判断四边形 的形状,并说明理由;
(2)当 时,求证: .
如图,在正方形ABCD中,对角线AC与BD相交于点O, ,点E在AB的延长线上,且 , 于点F,连接BF并延长交CD于点G,则 .
如图,在 和 中, , ,点 , , 依次在同一直线上,且 .
(1)求证: .
(2)连结 ,当 , 时,求 的长.
如图,过 对角线 与 的交点 作两条互相垂直的直线,分别交边 、 、 、 于点 、 、 、 .
(1)求证: ;
(2)顺次连接点 、 、 、 ,求证:四边形 是菱形.
如图,矩形 中, , 相交于点 ,过点 作 交 于点 ,交 于点 ,过点 作 交 于点 ,交 于点 ,连接 , .则下列结论:
① ;
② ;
③ ;
④当 时,四边形 是菱形.
其中,正确结论的个数是
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,在等边三角形 中,点 是边 上一定点,点 是直线 上一动点,以 为一边作等边三角形 ,连接 .
【问题解决】
如图1,若点 在边 上,求证: ;
【类比探究】
如图2,若点 在边 的延长线上,请探究线段 , 与 之间存在怎样的数量关系?并说明理由.
小敏思考解决如下问题:
原题:如图1,点 , 分别在菱形 的边 , 上, ,求证: .
(1)小敏进行探索,若将点 , 的位置特殊化;把 绕点 旋转得到 ,使 ,点 , 分别在边 , 上,如图2.此时她证明了 ,请你证明.
(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作 , ,垂足分别为 , .请你继续完成原题的证明.
(3)如果在原题中添加条件: , ,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
如图,等边三角形 边长是定值,点 是它的外心,过点 任意作一条直线分别交 , 于点 , .将 沿直线 折叠,得到△ ,若 , 分别交 于点 , ,连接 , ,则下列判断错误的是
A.
B.△ 的周长是一个定值
C.四边形 的面积是一个定值
D.四边形 的面积是一个定值