初中数学

如图,在Rt△ ABC中,∠ ABC=90°, BC=3, D为斜边 AC的中点,连接 BD,点 FBC边上的动点(不与点 BC重合),过点 BBEBDDF延长线交于点 E,连接 CE,下列结论:

①若 BFCF,则 CE 2+ AD 2DE 2

②若∠ BDE=∠ BACAB=4,则 CE 15 8

③△ ABD和△ CBE一定相似;

④若∠ A=30°,∠ BCE=90°,则 DE 21

其中正确的是  .(填写所有正确结论的序号)

来源:2019年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD中, AB=8, BC=6, MAD上一点,将△ ABM沿 BM翻折至△ EBMMEBE分别与 CD相交于 OF两点,且 OEOD,则 AM的长为   

来源:2018年内蒙古兴安盟中考数学试卷(a卷)
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,已知正方形 ABCD,点 M是边 BA延长线上的动点(不与点 A重合),且 AMAB,△ CBE由△ DAM平移得到.若过点 EEHACH为垂足,则有以下结论:①点 M位置变化,使得∠ DHC=60°时,2 BEDM;②无论点 M运动到何处,都有 DM 2 HM;③无论点 M运动到何处,∠ CHM一定大于135°.其中正确结论的序号为   

来源:2018年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图1, AFBE是△ ABC的中线, AFBE,垂足为点 P,设 BCaACbABc,则 a 2+ b 2=5 c 2,利用这一性质计算.如图2,在▱ ABCD中, EFG分别是 ADBCCD的中点, EBEG于点 EAD=8, AB=2 5 ,则 AF  

来源:2018年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在Rt△ ACB中,∠ ACB=90°, ACBCDAB上的一个动点(不与点 AB重合),连接 CD,将 CD绕点 C顺时针旋转90°得到 CE,连接 DEDEAC相交于点 F,连接 AE.下列结论:

①△ ACE≌△ BCD

②若∠ BCD=25°,则∠ AED=65°;

DE 2=2 CFCA

④若 AB=3 2 AD=2 BD,则 AF 5 3

其中正确的结论是   .(填写所有正确结论的序号)

来源:2018年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,边长为4的正方形ABCD内接于圆O,点E AB ̂ 上的一动点(不与AB重合),点F BC ̂ 上的一点,连接OEOF,分别与ABBC交于点GH,且 EOF 90 ° ,有以下结论:

AE ̂ = BF ̂

②△OGH是等腰三角形;

③四边形OGBH的面积随着点E位置的变化而变化;

④△GBH周长的最小值为 4 + 2 .

其中正确的是   (把你认为正确结论的序号都填上).

来源:2016年湖北省咸宁市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图,边长为1的正方形ABCD的对角线ACBD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PMPN分别与OAOB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PMPN分别交ABBCEF两点,连接EFOB于点G,则下列结论中正确的是          

(1) EF = 2 OE ;(2) S 四边形 OEBF : S 正方形 ABCD 1 : 4 ;(3) BE + BF = 2 OA ;(4)在旋转过程中,当△BEF与△COF的面积之和最大时, AE = 3 4 ;(5) OG BD A E 2 + C F 2

来源:2016年湖北省随州市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图,在▱ ABCD中,∠ B=30°, ABACO是两条对角线的交点,过点 OAC的垂线分别交边 ADBC于点 EF;点 M是边 AB的一个三等分点,则△ AOE与△ BMF的面积比为   

来源:2017年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图, MN是正方形 ABCD的边 CD上的两个动点,满足 AMBN,连接 ACBN于点 E,连接 DEAM于点 F,连接 CF,若正方形的边长为4,则线段 CF的最小值是  

来源:2017年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在△ ABC与△ ADE中, ABACADAE,∠ BAC=∠ DAE,且点 DAB上,点 E与点 CAB的两侧,连接 BECD,点 MN分别是 BECD的中点,连接 MNAMAN

下列结论:①△ ACD≌△ ABE;②△ ABC∽△ AMN;③△ AMN是等边三角形;④若点 DAB的中点,则 S ABC=2 S ABE

其中正确的结论是  .(填写所有正确结论的序号)

来源:2017年内蒙古包头市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD中,点 ECD的中点,点 FBC上一点,且 FC=2 BF,连接 AEEF.若 AB=2, AD=3,则cos∠ AEF的值是   

来源:2017年内蒙古包头市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD的面积为3 cm 2EBC边上一点,∠ BAE=30°, FAE的中点,过点 F作直线分别与 ABDC相交于点 MN.若 MNAE,则 AM的长等于    cm

来源:2016年内蒙古赤峰市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在四边形中,中点,于点

(1)若,则四边形的面积  

(2)若,则此时四边形的面积  (用“”或“”或“”填空).

来源:2016年福建省泉州市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在△ABC中,分别以ACBC为边作等边三角形ACD和等边三角形BCE,连接AEBD交于点O,则∠AOB的度数为  

来源:2016年广西贺州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,在Rt△ACB中,∠ACB=90°,ACBC=3,CD=1,CHBDH,点OAB中点,连接OH,则OH  

来源:2016年广西桂林市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质填空题