如图,在 中, , 、 分别为 、 的中点, ,过点 作 ,交 的延长线于点 ,则四边形 的面积为 .
已知点 是线段 的中点,点 是直线 上的任意一点,分别过点 和点 作直线 的垂线,垂足分别为点 和点 .我们定义垂足与中点之间的距离为"足中距".
(1) 猜想验证 如图1,当点 与点 重合时,请你猜想、验证后直接写出"足中距" 和 的数量关系是 .
(2) 探究证明 如图2,当点 是线段 上的任意一点时,"足中距" 和 的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.
(3) 拓展延伸 如图3,①当点 是线段 延长线上的任意一点时,"足中距" 和 的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;
②若 ,请直接写出线段 、 、 之间的数量关系.
如图,以等边三角形 的 边为直径画圆,交 于点 , 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)求线段 的长度.
如图,正方形纸片 的边长为12,点 是 上一点,将 沿 折叠,点 落在点 处,连接 并延长交 于点 .若 ,则 的长为 .
如图, 是边长为1的等边三角形, 、 为线段 上两动点,且 ,过点 、 分别作 、 的平行线相交于点 ,分别交 、 于点 、 .现有以下结论: ;②当点 与点 重合时, ;③ ;④当 时,四边形 为菱形,其中正确结论为
A. |
①②③ |
B. |
①②④ |
C. |
①②③④ |
D. |
②③④ |
在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作 , , 等大小的角,可以采用如下方法:
操作感知:
第一步:对折矩形纸片 ,使 与 重合,得到折痕 ,把纸片展开(如图1 .
第二步:再一次折叠纸片,使点 落在 上,并使折痕经过点 ,得到折痕 ,同时得到线段 (如图 .
猜想论证:
(1)若延长 交 于点 ,如图3所示,试判定 的形状,并证明你的结论.
拓展探究:
(2)在图3中,若 , ,当 , 满足什么关系时,才能在矩形纸片 中剪出符合(1)中结论的三角形纸片 ?
如图,在 中, 是 边上的中线,以 为直径的 交 于点 ,过 作 于点 ,交 的延长线于点 ,过点 作 于 .
(1)求证: ;
(2)求证:直线 是 的切线.
如图,在四边形 中, , , ,对角线 平分 ,则 的面积为
A. |
8 |
B. |
7.5 |
C. |
15 |
D. |
无法确定 |
已知 , 是等腰三角形的两边长,且 , 满足 ,则此等腰三角形的周长为
A. |
8 |
B. |
6或8 |
C. |
7 |
D. |
7或8 |
如图,已知 是等边三角形, 是 内部的一点,连接 , .
(1)如图1,以 为直径的半圆 交 于点 ,交 于点 ,当点 在 上时,连接 ,在 边的下方作 , ,连接 ,求 的度数;
(2)如图2, 是 边上一点,且 ,当 时,连接 并延长,交 于点 ,若 ,求证: ;
(3)如图3, 是 边上一点,当 时,连接 .若 , , , 的面积为 , 的面积为 ,求 的值(用含 的代数式表示).
如图, 是正方形 的一条对角线, 是 上一点, 是 延长线上一点,连接 , , .若 , ,则 的度数为 .
如图,在 中, , 和 关于直线 对称,连接 ,与 相交于点 ,过点 作 ,垂足为 , 相交于点 ,若 , ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|