如图,在 中, , ,点 在斜边 上,以 为直角边作等腰直角三角形 , ,则 , , 三者之间的数量关系是 .
如图,在正方形 ABCD中,点 E, F分别在 BC, CD上,如果 AE=3, EF=2, AF= ,那么正方形 ABCD的边长等于 .
中, , , ,过点 的直线把 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 .
如图,在矩形 中, , ,点 和点 分别为 , 上的点,将 沿 翻折,使点 落在 上的点 处,过点 作 交 于点 ,过点 作 交 于点 .若四边形 与四边形 的面积相等,则 的长为 .
如图,在平面直角坐标系中, 是坐标原点,在 中, , 于点 ,点 在反比例函数 的图象上,若 , ,则 的值为 .
如图,等腰中,,,点在线段上运动(不与、重合),将与分别沿直线、翻折得到与,给出下列结论:
①;
②的大小不变;
③面积的最小值为 ;
④当点在的中点时,是等边三角形,
其中所有正确结论的序号是 .
魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理.若图中,,则的长为 .
如图,矩形纸片 , , , 为边 上一点.将 沿 所在的直线折叠,点 恰好落在 边上的点 处,过点 作 ,垂足为点 ,取 的中点 ,连接 ,则 .
如图,将面积为 的矩形 沿对角线 折叠,点 的对应点为点 ,连接 交 于点 .若 ,则 的长为 .