如图,在平面直角坐标系 中,二次函数图象的顶点坐标为 ,该图象与 轴相交于点 、 ,与 轴相交于点 ,其中点 的横坐标为1.
(1)求该二次函数的表达式;
(2)求 .
抛物线 与 轴的一个交点坐标为 ,对称轴是直线 ,其部分图象如图所示,则此抛物线与 轴的另一个交点坐标是
A. |
, |
B. |
|
C. |
, |
D. |
|
如图,抛物线 与 轴交于点 、 ,把抛物线在 轴及其下方的部分记作 ,将 向左平移得到 , 与 轴交于点 、 ,若直线 与 、 共有3个不同的交点,则 的取值范围是
A. B. C. D.
已知不等式 的解集为 ,则下列结论正确的个数是
(1) ;
(2)当 时,函数 的图象与 轴没有公共点;
(3)当 时,抛物线 的顶点在直线 的上方;
(4)如果 且 ,则 的取值范围是 .
A.1B.2C.3D.4
如图,在平面直角坐标系中,二次函数 的图象与 轴交于 、 两点,与 轴交于点 ,其顶点为 ,连接 、 、 ,过点 作 轴的垂线 .
(1)求点 , 的坐标;
(2)直线 上是否存在点 ,使 的面积等于 的面积的2倍?若存在,求出点 的坐标;若不存在,请说明理由.
如图是二次函数 图象的一部分,图象过点 ,对称轴为直线 ,给出四个结论:
① ;
②若点 , 、 , 为函数图象上的两点,则 ;
③ ;
④ ,
其中,正确结论的个数是
A.1B.2C.3D.4
平面直角坐标系 中,二次函数 的图象与 轴有两个交点.
(1)当 时,求二次函数的图象与 轴交点的坐标;
(2)过点 作直线 轴,二次函数图象的顶点 在直线 与 轴之间(不包含点 在直线 上),求 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 相交于点 ,求 的面积最大时 的值.
如图示二次函数 的对称轴在 轴的右侧,其图象与 轴交于点 与点 , ,且与 轴交于点 ,小强得到以下结论:① ;② ;③ ;④当 时 ;以上结论中正确结论的序号为 .
二次函数 的图象如图所示,下列结论:
① ;② ;③ ;④当 时, 随 的增大而减小.
其中正确的有
A. |
4个 |
B. |
3个 |
C. |
2个 |
D. |
1个 |
二次函数 的图象如图所示,下列结论:
① ;② ;③ ;④ .
其中正确结论的个数是
A. |
4 |
B. |
3 |
C. |
2 |
D. |
1 |
已知直线y=﹣ x+3与坐标轴分别交于点A,B,点P在抛物线 上,能使△ABP为等腰三角形的点P的个数有( )
A.3个B.4个C.5个D.6个
如图是抛物线 的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线 与抛物线交于A,B两点,下列结论:
① ;②方程 有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当 时,有 ;⑤ ,其中正确的结论是 .(只填写序号)
如图是抛物线 的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:
① ;
② ;
③ ;
④一元二次方程 有两个不相等的实数根.
其中正确结论的个数是( )
A.1个B.2个C.3个D.4个