已知函数 , .在同一平面直角坐标系中.
(1)若函数 的图象过点 ,函数 的图象过点 ,求 , 的值.
(2)若函数 的图象经过 的顶点.
①求证: ;
②当 时,比较 , 的大小.
如图,二次函数 的图象与 轴的正半轴交于点 ,对称轴为直线 .下面结论:
① ;
② ;
③ ;
④方程 必有一个根大于 且小于0.
其中正确的是 .(只填序号)
如图,已知抛物线 与反比例函数 的图象相交于点 ,且 点的横坐标为3,抛物线与 轴交于点 , 是抛物线 的顶点, 点是 轴上一动点,当 最小时, 点的坐标为 .
如图,在平面直角坐标系中,二次函数 图象的顶点是 ,与 轴交于 , 两点,与 轴交于点 .点 的坐标是 .
(1)求 , 两点的坐标,并根据图象直接写出当 时 的取值范围.
(2)平移该二次函数的图象,使点 恰好落在点 的位置上,求平移后图象所对应的二次函数的表达式.
已知二次函数 (其中 是自变量),当 时, 随 的增大而增大,且 时, 的最大值为9,则 的值为
A.1或 B. 或 C. D.1
已知二次函数 的图象如图所示,有下列5个结论:
① ;
② ;
③ ;
④ ;
⑤若方程 有四个根,则这四个根的和为2.
其中正确的结论有
A. |
2个 |
B. |
3个 |
C. |
4个 |
D. |
5个 |
二次函数 的图象与一次函数 的图象有且仅有一个交点,则实数 的取值范围是
A. B.
C. 或 D. 或
已知二次函数 ,当 时 ,则下列说法正确的是
A.当 时, 有最小值B.当 时, 有最大值
C.当 时, 无最小值D.当 时, 有最大值
已知抛物线 上的部分点的横坐标 与纵坐标 的对应值如表:
|
|
|
0 |
1 |
2 |
3 |
|
|
|
3 |
0 |
|
|
3 |
|
以下结论正确的是
A. |
抛物线 的开口向下 |
B. |
当 时, 随 增大而增大 |
C. |
方程 的根为0和2 |
D. |
当 时, 的取值范围是 |
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知抛物线 , , 是常数, 经过点 , ,当 时,与其对应的函数值 .有下列结论:
① ;
②关于 的方程 有两个不等的实数根;
③ .
其中,正确结论的个数是
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
二次函数 的图象如图所示,有下列结论:① ,② ,③ ,④ ,正确的有( )
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,已知抛物线 的对称轴为直线 .给出下列结论:
① ;
② ;
③ ;
④ .
其中,正确的结论有
A.1个B.2个C.3个D.4个