初中数学

将二次函数 y = x 2 - 5 x - 6 x 轴上方的图象沿 x 轴翻折到 x 轴下方,图象的其余部分不变,得到一个新图象,若直线 y = 2 x + b 与这个新图象有3个公共点,则 b 的值为 (    )

A.

- 73 4 - 12

B.

- 73 4 或2

C.

- 12 或2

D.

- 69 4 - 12

来源:2019年山东省济南市莱芜区中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

二次函数 y = x 2 + ( a 2 ) x + 3 的图象与一次函数 y = x ( 1 x 2 ) 的图象有且仅有一个交点,则实数 a 的取值范围是 (    )

A. a = 3 ± 2 3 B. 1 a < 2

C. a = 3 + 2 3 1 2 a < 2 D. a = 3 2 3 1 a < 1 2

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 - 1 y 轴交于点 A ,与直线 y = kx ( k 为任意实数)相交于 B C 两点,则下列结论不正确的是 (    )

A.

存在实数 k ,使得 ΔABC 为等腰三角形

B.

存在实数 k ,使得 ΔABC 的内角中有两角分别为 30 ° 60 °

C.

任意实数 k ,使得 ΔABC 都为直角三角形

D.

存在实数 k ,使得 ΔABC 为等边三角形

来源:2019年四川省宜宾市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

关于抛物线 y = ( x + 1 ) 2 - 2 ,下列结论中正确的是 (    )

A.对称轴为直线 x = 1

B.当 x < - 3 时, y x 的增大而减小

C.与 x 轴没有交点

D.与 y 轴交于点 ( 0 , - 2 )

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,对于二次函数 y = ( x - 2 ) 2 + 1 ,下列说法中错误的是 (    )

A.

y 的最小值为1

B.

图象顶点坐标为 ( 2 , 1 ) ,对称轴为直线 x = 2

C.

x < 2 时, y 的值随 x 值的增大而增大,当 x 2 时, y 的值随 x 值的增大而减小

D.

它的图象可以由 y = x 2 的图象向右平移2个单位长度,再向上平移1个单位长度得到

来源:2019年四川省雅安市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 ,当 a x b m y n ,则下列说法正确的是 (    )

A.当 n - m = 1 时, b - a 有最小值B.当 n - m = 1 时, b - a 有最大值

C.当 b - a = 1 时, n - m 无最小值D.当 b - a = 1 时, n - m 有最大值

来源:2020年浙江省嘉兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 y = x 2 - 2 x - 3 x 轴于 A B 两点(点 A 在点 B 的左侧),将该抛物线位于 x 轴上方曲线记作 M ,将该抛物线位于 x 轴下方部分沿 x 轴翻折,翻折后所得曲线记作 N ,曲线 N y 轴于点 C ,连接 AC BC

(1)求曲线 N 所在抛物线相应的函数表达式;

(2)求 ΔABC 外接圆的半径;

(3)点 P 为曲线 M 或曲线 N 上的一动点,点 Q x 轴上的一个动点,若以点 B C P Q 为顶点的四边形是平行四边形,求点 Q 的坐标.

来源:2017年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 8 ( a 0 ) 经过点 ( - 2 , 0 )

(1)求抛物线的函数表达式和顶点坐标.

(2)直线 l 交抛物线于点 A ( - 4 , m ) B ( n , 7 ) n 为正数.若点 P 在抛物线上且在直线 l 下方(不与点 A B 重合),分别求出点 P 横坐标与纵坐标的取值范围.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知经过原点的抛物线 y = 2 x 2 + mx x 轴交于另一点 A ( 2 , 0 )

(1)求 m 的值和抛物线顶点 M 的坐标;

(2)求直线 AM 的解析式.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a b c 是常数, a 0 ) 经过点 ( - 1 , - 1 ) ( 0 , 1 ) ,当 x = - 2 时,与其对应的函数值 y > 1 .有下列结论:

abc > 0

②关于 x 的方程 a x 2 + bx + c - 3 = 0 有两个不等的实数根;

a + b + c > 7

其中,正确结论的个数是 (    )

A.

0

B.

1

C.

2

D.

3

来源:2021年天津市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

二次函数 y a x 2 + bx + c a 0 的图象如图所示,有下列结论:① abc 0 ,② 4 a 2 b + c 0 ,③ a b x ax + b ,④ 3 a + c 0 ,正确的有(  )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年四川省广安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 的对称轴为直线 x = 1 .给出下列结论:

ac < 0

b 2 - 4 ac > 0

2 a - b = 0

a - b + c = 0

其中,正确的结论有 (    )

A.1个B.2个C.3个D.4个

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx ( a < 0 ) 过点 E ( 10 , 0 ) ,矩形 ABCD 的边 AB 在线段 OE 上(点 A 在点 B 的左边),点 C D 在抛物线上.设 A ( t , 0 ) ,当 t = 2 时, AD = 4

(1)求抛物线的函数表达式.

(2)当 t 为何值时,矩形 ABCD 的周长有最大值?最大值是多少?

(3)保持 t = 2 时的矩形 ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 G H ,且直线 GH 平分矩形的面积时,求抛物线平移的距离.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 L 1 : y = x 2 + bx + c 过点 C ( 0 , - 3 ) ,与抛物线 L 2 : y = - 1 2 x 2 - 3 2 x + 2 的一个交点为 A ,且点 A 的横坐标为2,点 P Q 分别是抛物线 L 1 L 2 上的动点.

(1)求抛物线 L 1 对应的函数表达式;

(2)若以点 A C P Q 为顶点的四边形恰为平行四边形,求出点 P 的坐标;

(3)设点 R 为抛物线 L 1 上另一个动点,且 CA 平分 PCR .若 OQ / / PR ,求出点 Q 的坐标.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知:抛物线 y a x 2 + bx + c x轴交于点A(2,0)、B(4,0),且过点C(0,4).

(1)求出抛物线的解析式和顶点坐标.

(2)请你求出抛物线向左平移3个单位,再向上平移1.5个单位后抛物线的解析式.

来源:2016年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题