如图,在直角坐标系中,直线 与双曲线 分别相交于第二、四象限内的 , 两点,与 轴相交于 点.已知 , .
(1)求 , 对应的函数表达式;
(2)求 的面积;
(3)直接写出当 时,不等式 的解集.
已知三个点 , , , , , 在反比例函数 的图象上,其中 ,下列结论中正确的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在平面直角坐标系中,矩形 的对角线 的中点与坐标原点重合,点 是 轴上一点,连接 .若 平分 ,反比例函数 的图象经过 上的两点 , ,且 , 的面积为18,则 的值为
A.6B.12C.18D.24
已知 , , , 是反比例函数 图象上的两个点,当 时, ,那么一次函数 的图象不经过
A.第一象限B.第二象限C.第三象限D.第四象限
如图,在平面直角坐标系 中,一次函数 的图象分别与 轴、 轴交于点 、 ,与反比例函数 的图象交于点 ,连接 .已知点 , .
(1)求 、 的值;
(2)求 的面积.
已知点 , , , , , 都在反比例函数 的图象上,且 ,则 , , 的大小关系是
A. B. C. D.
小明根据学习函数的经验,对函数 的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是 .
(2)下表列出了 与 的几组对应值,请写出 , 的值: , ;
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
(3)如图,在平面直角坐标系 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当 时, .
②写出该函数的一条性质 .
③若方程 有两个不相等的实数根,则 的取值范围是 .
如图, 中, ,顶点 , 都在反比例函数 的图象上,直线 轴,垂足为 ,连结 , ,并延长 交 于点 ,当 时,点 恰为 的中点,若 , .
(1)求反比例函数的解析式;
(2)求 的度数.
如图,在平面直角坐标系中,一次函数 的图象与 轴相交于点 ,与反比例函数 在第一象限内的图象相交于点 ,过点 作 轴于点 .
(1)求反比例函数的解析式;
(2)求 的面积.
已知反比例函数 的图象经过点 ,则这个函数的图象位于
A. |
二、三象限 |
B. |
一、三象限 |
C. |
三、四象限 |
D. |
二、四象限 |