初中数学

如图,在平面直角坐标系中,点 A B 在函数 y = k x ( k > 0 , x > 0 ) 的图象上,过点 A x 轴的垂线,与函数 y = - k x ( x > 0 ) 的图象交于点 C ,连结 BC x 轴于点 D .若点 A 的横坐标为1, BC = 3 BD ,则点 B 的横坐标为 (    )

A.

3 2

B.

2

C.

5 2

D.

3

来源:2021年吉林省长春市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

A ( x 1 y 1 ) B ( x 1 + 1 y 2 ) 是反比例函数 y = k x 图象上的两点,满足:当 x 1 > 0 时,均有 y 1 < y 2 ,则 k 的取值范围是   

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于 y 轴对称,则把该函数称之为“ T 函数”,其图象上关于 y 轴对称的不同两点叫做一对“ T 点”.根据该约定,完成下列各题.

(1)若点 A ( 1 , r ) 与点 B ( s , 4 ) 是关于 x 的“ T 函数” y = - 4 x ( x < 0 ) t x 2 x 0 , t 0 , t 是常数 的图象上的一对“ T 点”,则 r =    s =    t =   (将正确答案填在相应的横线上);

(2)关于 x 的函数 y = kx + p ( k p 是常数)是“ T 函数”吗?如果是,指出它有多少对“ T 点”如果不是,请说明理由;

(3)若关于 x 的“ T 函数” y = a x 2 + bx + c ( a > 0 ,且 a b c 是常数)经过坐标原点 O ,且与直线 l : y = mx + n ( m 0 n > 0 ,且 m n 是常数)交于 M ( x 1 y 1 ) N ( x 2 y 2 ) 两点,当 x 1 x 2 满足 ( 1 - x 1 ) - 1 + x 2 = 1 时,直线 l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.

来源:2021年湖南省长沙市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

阅读下面的材料:

如果函数 y = f ( x ) 满足:对于自变量 x 取值范围内的任意 x 1 x 2

(1)若 x 1 < x 2 ,都有 f ( x 1 ) < f ( x 2 ) ,则称 f ( x ) 是增函数;

(2)若 x 1 < x 2 ,都有 f ( x 1 ) > f ( x 2 ) ,则称 f ( x ) 是减函数.

例题:证明函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

证明:任取 x 1 < x 2 ,且 x 1 > 0 x 2 > 0

f ( x 1 ) - f ( x 2 ) = x 1 2 - x 2 2 = ( x 1 + x 2 ) ( x 1 - x 2 )

x 1 < x 2 x 1 > 0 x 2 > 0

x 1 + x 2 > 0 x 1 - x 2 < 0

( x 1 + x 2 ) ( x 1 - x 2 ) < 0 ,即 f ( x 1 ) - f ( x 2 ) < 0 f ( x 1 ) < f ( x 2 )

函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

根据以上材料解答下列问题:

(1)函数 f ( x ) = 1 x ( x > 0 ) f (1) = 1 1 = 1 f (2) = 1 2 f (3) =    f (4) =   

(2)猜想 f ( x ) = 1 x ( x > 0 )   函数(填“增”或“减” ) ,并证明你的猜想.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,已知反比例函数 y = k x ( k 0 ) 与正比例函数 y = 2 x 的图象交于 A ( 1 , m ) B 两点.

(1)求该反比例函数的表达式;

(2)若点 C x 轴上,且 ΔBOC 的面积为3,求点 C 的坐标.

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

请写出一个图象在第二、四象限的反比例函数的表达式:  

来源:2021年湖南省永州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知点 A ( 1 , y 1 ) B ( 2 , y 2 ) 为反比例函数 y = 3 x 图象上的两点,则 y 1 y 2 的大小关系是 y 1    y 2 .(填“ > ”“ = ”或“ < )

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

根据反比例函数的性质、联系化学学科中的溶质质量分数的求法以及生活体验等,判定下列有关函数 y = x a + x ( a 为常数且 a > 0 x > 0 ) 的性质表述中,正确的是 (    )

y x 的增大而增大

y x 的增大而减小

0 < y < 1

0 y 1

A.

①③

B.

①④

C.

②③

D.

②④

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AO BO AB y 轴, O 为坐标原点, A 的坐标为 ( n , 3 ) ,反比例函数 y 1 = k 1 x 的图象的一支过 A 点,反比例函数 y 2 = k 2 x 的图象的一支过 B 点,过 A AH x 轴于 H ,若 ΔAOH 的面积为 3 2

(1)求 n 的值;

(2)求反比例函数 y 2 的解析式.

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知点 A ( a , y 1 ) B ( a + 1 , y 2 ) 在反比例函数 y = m 2 + 1 x ( m 是常数)的图象上,且 y 1 < y 2 ,则 a 的取值范围是   

来源:2021年湖北省武汉市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, Rt Δ ABC 的斜边 BC x 轴上,坐标原点是 BC 的中点, ABC = 30 ° BC = 4 ,双曲线 y = k x 经过点 A

(1)求 k

(2)直线 AC 与双曲线 y = - 3 3 x 在第四象限交于点 D ,求 ΔABD 的面积.

来源:2021年湖北省恩施州中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知反比例函数 y = k x ,当 x < 0 时, y x 的增大而减小,那么一次函数 y = - kx + k 的图象经过第 (    )

A.

一、二、三象限

B.

一、二、四象限

C.

一、三、四象限

D.

二、三、四象限

来源:2021年黑龙江省大庆市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

若点 A ( 1 , y 1 ) B ( 3 , y 2 ) 在反比例函数 y = 3 x 的图象上,则 y 1    y 2 (填“ > ”“ < ”或“ = )

来源:2021年海南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

先化简再求值: ( a - 2 + 1 a ) ÷ ( a - 1 ) 2 | a | ,其中 a 使反比例函数 y = a x 的图象分别位于第二、四象限.

来源:2021年广西玉林市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

若点 A ( - 3 , y 1 ) B ( - 4 , y 2 ) 在反比例函数 y = a 2 + 1 x 的图象上,则 y 1    y 2 .(填“ > ”或“ < ”或“ = )

来源:2021年甘肃省武威市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

初中数学反比例函数的性质试题