如图,在平面直角坐标系中, Rt Δ ABC 的斜边 BC 在 x 轴上,坐标原点是 BC 的中点, ∠ ABC = 30 ° , BC = 4 ,双曲线 y = k x 经过点 A .
(1)求 k ;
(2)直线 AC 与双曲线 y = - 3 3 x 在第四象限交于点 D ,求 ΔABD 的面积.
已知:,,点在轴上,. (1)直接写出点的坐标; (2)若,求点的坐标.
解不等式组,并写出该不等式组的整数解.
解不等式,并把解集在数轴上表示出来.
解方程:
(a)100×100=1002=10000, (b)99×101=1002-1=9999, (c)98×102=-=, (d)97×=-=. (1)用含有n的式子表示上述规律_________; (2)上述式子左边两因数的和总是200,而积却因两因数的接近程度而不同,两因数越接近,其积就越;而当两因数时,其积最大,最大值为. (3)已知a+b=100,则ab的最大值为; (4)用10米长的绳子围成一个矩形,怎样才能使矩形面积最大?最大的面积是多少?