如图,在平面直角坐标系中, Rt Δ ABC 的斜边 BC 在 x 轴上,坐标原点是 BC 的中点, ∠ ABC = 30 ° , BC = 4 ,双曲线 y = k x 经过点 A .
(1)求 k ;
(2)直线 AC 与双曲线 y = - 3 3 x 在第四象限交于点 D ,求 ΔABD 的面积.
某校初二全体320名学生在参加电脑培训前后各进行了一次水平相同的考试,考试都以同一标准划分成“不合格、合格、优秀”三个等级,为了了解培训的效果,用抽签的方式得到其中32名学生的两次考试等级,所绘的统计图如图所示,结合图示信息回答下列问题: ⑴这32名学生培训前考分的中位数所在的等级是;⑵这32名学生经过培训后,考分等级“不合格”的百分比是;⑶估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有名;⑷你认为上述估计合理吗?理由是什么?
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元. (1)该顾客至少可得到元购物券,至多可得到元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.
先化简后求值:当时,求代数式的值.
计算 +;