一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离 (千米)与行驶时间 (小时)的对应关系如图所示:
(1)甲乙两地相距多远?
(2)求快车和慢车的速度分别是多少?
(3)求出两车相遇后 与 之间的函数关系式;
(4)何时两车相距300千米.
小强的爸爸从家骑自行车去图书馆借书,途中遇到了从图书馆步行回家的小强,爸爸借完书后迅速回家,途中追上了小强,便用自行车载上小强一起回家,结果爸爸比自己单独骑车回家晚到1分钟,两人与家的距离 (千米)和爸爸从家出发后的时间 (分钟)之间的关系如图所示.
(1)图书馆离家有多少千米?
(2)爸爸和小强第一次相遇时,离家多少千米?
(3)爸爸载上小强后一起回家的速度是多少?
暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离 与汽车行驶时间 之间的函数图象如图所示.
(1)从小刚家到该景区乘车一共用了多少时间?
(2)求线段 对应的函数解析式;
(3)小刚一家出发2.5小时时离目的地多远?
首条贯通丝绸之路经济带的高铁线 宝兰客专进入全线拉通试验阶段.宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为 (小时),两车之间的距离为 (千米),图中的折线表示 与 之间的函数关系,根据图象进行以下探究:
(信息读取)
(1)西宁到西安两地相距 千米,两车出发后 小时相遇;
(2)普通列车到达终点共需 小时,普通列车的速度是 千米 小时.
(解决问题)
(3)求动车的速度;
(4)普通列车行驶 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安?
草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量 (千克)与销售单价 (元)符合一次函数关系,如图是 与 的函数关系图象.
(1)求 与 的函数解析式(也称关系式);
(2)设该水果销售店试销草莓获得的利润为 元,求 的最大值.
列方程(组)及不等式解应用题
春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
甲 |
乙 |
|
原料成本 |
12 |
8 |
销售单价 |
18 |
12 |
生产提成 |
1 |
0.8 |
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本 生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润 销售收入 投入总成本)
某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元 个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.
(1)求两种球拍每副各多少元?
(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.
随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少 ,求:
(1) 型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批 型车和新款 型车共60辆,且 型车的进货数量不超过 型车数量的两倍.已知 型车和 型车的进货价格分别为1500元和1800元,计划 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?
某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本 (元)与月产销量 (个)满足如下关系:
月产销量 (个) |
|
160 |
200 |
240 |
300 |
|
每个玩具的固定成本 (元) |
|
60 |
48 |
40 |
32 |
|
(1)写出月产销量 (个)与销售单价 (元)之间的函数关系式;
(2)求每个玩具的固定成本 (元)与月产销量 (个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品 千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用 (元)与 (千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸 骑自行车先走,平均每小时骑行 ;李玉刚同学和妈妈 乘公交车后行,公交车平均速度是 .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为 .设爸爸骑行时间为 .
(1)请分别写出爸爸的骑行路程 、李玉刚同学和妈妈的乘车路程 与 之间的函数解析式,并注明自变量的取值范围;
(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;
(3)请回答谁先到达老家.
在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米. 取 .
(1)求400米跑道中一段直道的长度;
(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:
跑道宽度 米 |
0 |
1 |
2 |
3 |
4 |
5 |
|
跑道周长 米 |
400 |
|
|
|
|
|
|
若设 表示跑道宽度(单位:米), 表示该跑道周长(单位:米),试写出 与 的函数关系式:
(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?
将直角三角板 按如图1放置,直角顶点 与坐标原点重合,直角边 、 分别与 轴和 轴重合,其中 .将此三角板沿 轴向下平移,当点 平移到原点 时运动停止.设平移的距离为 ,平移过程中三角板落在第一象限部分的面积为 , 关于 的函数图象(如图2所示)与 轴相交于点 , ,与 轴相交于点 .
(1)试确定三角板 的面积;
(2)求平移前 边所在直线的解析式;
(3)求 关于 的函数关系式,并写出 点的坐标.
为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:
用户每月用水量 |
32及其以下 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43及其以上 |
户数(户) |
200 |
160 |
180 |
220 |
240 |
210 |
190 |
100 |
170 |
120 |
100 |
110 |
(1)为确保 的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?
(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设 表示每户每月用水量(单位: ), 表示每户每月应交水费(单位:元),求 与 的函数关系式;
(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?