江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额 、 (单位:元)与原价 (单位:元)之间的函数关系如图所示.
(1)直接写出 , 关于 的函数关系式;
(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?
一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离 (单位: 与慢车行驶时间 (单位: 的函数关系如图,则两车先后两次相遇的间隔时间是
A. |
|
B. |
|
C. |
|
D. |
|
4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.
甲书店:所有书籍按标价8折出售;
乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.
(1)以 (单位:元)表示标价总额, (单位:元)表示应支付金额,分别就两家书店的优惠方式,求 关于 的函数解析式;
(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?
蚊香长度 (厘米)与燃烧时间 (小时)之间的函数表达式为 .则蚊香燃烧的速度是
A.10厘米 小时B.105厘米 小时
C.10.5厘米 小时D.不能确定
小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回 到家,再过 小东到达学校,小东始终以 的速度步行,小东和妈妈的距离 (单位: 与小东打完电话后的步行时间 (单位: 之间的函数关系如图所示,下列四种说法:
①打电话时,小东和妈妈的距离为1400米;
②小东和妈妈相遇后,妈妈回家速度为 ;
③小东打完电话后,经过 到达学校;
④小东家离学校的距离为 .
其中正确的个数是
A.1个B.2个C.3个D.4个
渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元 千克,根据市场调查发现,批发价定为48元 千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.
(1)写出工厂每天的利润 元与降价 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?
(2)当降价多少元时,工厂每天的利润最大,最大为多少元?
(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?
某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.
(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?
(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?
小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第 回到家中.设小明出发第 时的速度为 ,离家的距离为 , 与 之间的函数关系如图所示(图中的空心圈表示不包含这一点).
(1)小明出发第 时离家的距离为 ;
(2)当 时,求 与 之间的函数表达式;
(3)画出 与 之间的函数图象.
今年植树节期间,某景观园林公司购进一批成捆的 , 两种树苗,每捆 种树苗比每捆 种树苗多10棵,每捆 种树苗和每捆 种树苗的价格分别是630元和600元,而每棵 种树苗和每棵 种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
(1)求这一批树苗平均每棵的价格是多少元?
(2)如果购进的这批树苗共5500棵, 种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进 种树苗和 种树苗各多少棵?并求出最低费用.
甲无人机从地面起飞,乙无人机从距离地面 高的楼顶起飞,两架无人机同时匀速上升 .甲、乙两架无人机所在的位置距离地面的高度 (单位: 与无人机上升的时间 (单位: 之间的关系如图所示.下列说法正确的是
A. |
时,两架无人机都上升了 |
B. |
时,两架无人机的高度差为 |
C. |
乙无人机上升的速度为 |
D. |
时,甲无人机距离地面的高度是 |
某通讯公司就手机流量套餐推出三种方案,如下表:
|
方案 |
方案 |
方案 |
每月基本费用(元 |
20 |
56 |
266 |
每月免费使用流量(兆 |
1024 |
|
无限 |
超出后每兆收费(元 |
|
|
|
, , 三种方案每月所需的费用 (元 与每月使用的流量 (兆 之间的函数关系如图所示.
(1)请写出 , 的值.
(2)在 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用 (元 与每月使用的流量 (兆 之间的函数关系式.
(3)在这三种方案中,当每月使用的流量超过多少兆时,选择 方案最划算?
某品牌鞋子的长度 与鞋子的"码"数 之间满足一次函数关系.若22码鞋子的长度为 ,44码鞋子的长度为 ,则38码鞋子的长度为
A. |
|
B. |
|
C. |
|
D. |
|
下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.
探究3
电话计费问题
下表中有两种移动电话计费方式.
月使用费 元 |
主叫限定时间 |
主叫超时费 (元 |
被叫 |
|
方式一 |
58 |
150 |
0.25 |
免费 |
方式二 |
88 |
350 |
0.19 |
免费 |
考虑下列问题:
月使用费固定收: 主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费. |
(1)设一个月内用移动电话主叫为 是正整数).根据上表,列表说明:当 在不同时间范围内取值时,按方式一和方式二如何计费.
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.
(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量 和自变量的函数 ,请你帮小明写出:
表示问题中的 , 表示问题中的 .
并写出计费方式一和二分别对应的函数解析式;
(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象写出如何根据主叫时间选择省钱的计费方式.(注 坐标轴单位长度可根据需要自己确定)
暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.
方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;
方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.
设某学生暑期健身 (次 ,按照方案一所需费用为 (元 ,且 ;按照方案二所需费用为 (元 ,且 .其函数图象如图所示.
(1)求 和 的值,并说明它们的实际意义;
(2)求打折前的每次健身费用和 的值;
(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.