初中数学

探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 y = x + | - 2 x + 6 | + m 性质及其应用的部分过程,请按要求完成下列各小题.

x

- 2

- 1

0

1

2

3

4

5

y

6

5

4

a

2

1

b

7

(1)写出函数关系式中 m 及表格中 a b 的值:

m =    a =    b =   

(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:   

(3)已知函数 y = 16 x 的图象如图所示,结合你所画的函数图象,直接写出不等式 x + | - 2 x + 6 | + m > 16 x 的解集.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数 y = 4 - x 2 x 2 + 1 的性质及其应用的部分过程,请按要求完成下列各小题.

(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;

x

- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

5

y = 4 - x 2 x 2 + 1

- 21 26

- 12 17

- 1 2

0

3 2

4

  3 2  

0

  

  

  

(2)请根据这个函数的图象,写出该函数的 " D 条性质;

(3)已知函数 y = - 3 2 x + 3 的图象如图所示.根据函数图象,直接写出不等式 - 3 2 x + 3 > 4 - x 2 x 2 + 1 的解集.(近似值保留一位小数,误差不超过 0 . 2 )

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

)已知正比例函数 y = kx ( k 0 ) 与反比例函数 y = 6 x 的图象都经过点 A ( m , 2 )

(1)求 k m 的值;

(2)在图中画出正比例函数 y = kx 的图象,并根据图象,写出正比例函数值大于反比例函数值时 x 的取值范围.

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

甲、乙两人沿同一直道从 A 地去 B 地.甲比乙早 1 min 出发,乙的速度是甲的2倍.在整个行程中,甲离 A 地的距离 y 1 (单位: m ) 与时间 x (单位: min ) 之间的函数关系如图所示.

(1)在图中画出乙离 A 地的距离 y 2 (单位: m ) 与时间 x 之间的函数图象;

(2)若甲比乙晚 5 min 到达 B 地,求甲整个行程所用的时间.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数 y = 6 x x 2 + 1 性质及其应用的部分过程,请按要求完成下列各小题.

(1)请把下表补充完整,并在图中补全该函数图象;

x

- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

5

y = 6 x x 2 + 1

- 15 13

- 24 17

  

- 12 5

- 3

0

3

12 5

  

24 17

15 13

(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“ ”,错误的在答题卡上相应的括号内打“ × ”;

①该函数图象是轴对称图形,它的对称轴为 y 轴.

②该函数在自变量的取值范围内,有最大值和最小值.当 x = 1 时,函数取得最大值3;当 x = - 1 时,函数取得最小值 - 3

③当 x < - 1 x > 1 时, y x 的增大而减小;当 - 1 < x < 1 时, y x 的增大而增大.

(3)已知函数 y = 2 x - 1 的图象如图所示,结合你所画的函数图象,直接写出不等式 6 x x 2 + 1 > 2 x - 1 的解集(保留1位小数,误差不超过 0 . 2 )

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

a b 是任意两个实数,用 max { a b } 表示 a b 两数中较大者,例如: max { 1 1 } = 1 max { 1 2 } = 2 max { 4 3 } = 4 ,参照上面的材料,解答下列问题:

(1) max { 5 2 } =    max { 0 3 } =   

(2)若 max { 3 x + 1 x + 1 } = x + 1 ,求 x 的取值范围;

(3)求函数 y = x 2 2 x 4 y = x + 2 的图象的交点坐标,函数 y = x 2 2 x 4 的图象如图所示,请你在图中作出函数 y = x + 2 的图象,并根据图象直接写出 max { x + 2 x 2 2 x 4 } 的最小值.

来源:2017年湖南省郴州市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

已知一次函数 y 2 x + 4

(1)在如图所示的平面直角坐标系中,画出函数的图象;

(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;

(3)在(2)的条件下,求出△AOB的面积;

(4)利用图象直接写出:当 y 0 时,x的取值范围.

来源:2016年湖南省怀化市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知一次函数,当时,,求此函数的解析式,并在平面直角坐标系中画出此函数图象.

来源:2016年福建省厦门市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:

0

1

2

3

1

2

1

0

1

2

描点:在平面直角坐标系中,以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示.

(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;

(2)研究函数并结合图象与表格,回答下列问题:

①点在函数图象上,则    ;(填“”,“ ”或“

②当函数值时,求自变量的值;

③在直线的右侧的函数图象上有两个不同的点,且,求的值;

④若直线与函数图象有三个不同的交点,求的取值范围.

来源:2019年湖南省郴州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数的图象如图所示.

0

1

2

3

0

(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点的坐标和函数的对称轴.

(2)探索思考:平移函数的图象可以得到函数的图象,分别写出平移的方向和距离.

(3)拓展应用:在所给的平面直角坐标系内画出函数的图象.若点在该函数图象上,且,比较的大小.

来源:2019年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

某物流公司引进两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,种机器人于某日0时开始搬运,过了1小时,种机器人也开始搬运,如图,线段表示种机器人的搬运量(千克)与时间(时的函数图象,线段表示种机器人的搬运量(千克)与时间(时的函数图象.根据图象提供的信息,解答下列问题:

(1)求关于的函数解析式;

(2)如果两种机器人连续搬运5个小时,那么种机器人比种机器人多搬运了多少千克?

来源:2016年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

在所挂物体质量不超过时,一弹簧的长度是所挂物体质量的一次函数,其图象如图所示.

(1)求之间的函数表达式及该弹簧不挂物体时的长度;

(2)若该弹簧挂上一个物体后,弹簧长度为,求这个物体的质量.

来源:2019年陕西省中考数学试卷(副卷)
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,过点 A ( 2 , 0 ) 的两条直线 l 1 l 2 分别交 y 轴于点 B C ,其中点 B 在原点上方,点 C 在原点下方,已知 AB = 13

(1)求点 B 的坐标;

(2)若 ΔABC 的面积为4,求直线 l 2 的解析式.

来源:2016年江西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

初中数学一次函数的图象解答题