探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
6 |
5 |
4 |
|
2 |
1 |
|
7 |
|
(1)写出函数关系式中 及表格中 , 的值:
, , ;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: ;
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集.
在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数 的性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
0 |
|
4 |
|
0 |
|
|
|
|
(2)请根据这个函数的图象,写出该函数的 条性质;
(3)已知函数 的图象如图所示.根据函数图象,直接写出不等式 的解集.(近似值保留一位小数,误差不超过
)已知正比例函数 与反比例函数 的图象都经过点 .
(1)求 , 的值;
(2)在图中画出正比例函数 的图象,并根据图象,写出正比例函数值大于反比例函数值时 的取值范围.
甲、乙两人沿同一直道从 地去 地.甲比乙早 出发,乙的速度是甲的2倍.在整个行程中,甲离 地的距离 (单位: 与时间 (单位: 之间的函数关系如图所示.
(1)在图中画出乙离 地的距离 (单位: 与时间 之间的函数图象;
(2)若甲比乙晚 到达 地,求甲整个行程所用的时间.
在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在图中补全该函数图象;
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
|
|
0 |
3 |
|
|
|
|
|
(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“ ”,错误的在答题卡上相应的括号内打“ ”;
①该函数图象是轴对称图形,它的对称轴为 轴.
②该函数在自变量的取值范围内,有最大值和最小值.当 时,函数取得最大值3;当 时,函数取得最小值 .
③当 或 时, 随 的增大而减小;当 时, 随 的增大而增大.
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集(保留1位小数,误差不超过 .
设 、 是任意两个实数,用 , 表示 、 两数中较大者,例如: , , , , , ,参照上面的材料,解答下列问题:
(1) , , , ;
(2)若 , ,求 的取值范围;
(3)求函数 与 的图象的交点坐标,函数 的图象如图所示,请你在图中作出函数 的图象,并根据图象直接写出 , 的最小值.
已知一次函数 .
(1)在如图所示的平面直角坐标系中,画出函数的图象;
(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;
(3)在(2)的条件下,求出△AOB的面积;
(4)利用图象直接写出:当 时,x的取值范围.
若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:
0 |
1 |
2 |
3 |
||||||||||||
1 |
2 |
1 |
0 |
1 |
2 |
描点:在平面直角坐标系中,以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示.
(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;
(2)研究函数并结合图象与表格,回答下列问题:
①点,,,,,,在函数图象上,则 , ;(填“”,“ ”或“”
②当函数值时,求自变量的值;
③在直线的右侧的函数图象上有两个不同的点,,,,且,求的值;
④若直线与函数图象有三个不同的交点,求的取值范围.
函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数和的图象如图所示.
0 |
1 |
2 |
3 |
||||||
0 |
(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点,的坐标和函数的对称轴.
(2)探索思考:平移函数的图象可以得到函数和的图象,分别写出平移的方向和距离.
(3)拓展应用:在所给的平面直角坐标系内画出函数的图象.若点,和,在该函数图象上,且,比较,的大小.
某物流公司引进、两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,种机器人于某日0时开始搬运,过了1小时,种机器人也开始搬运,如图,线段表示种机器人的搬运量(千克)与时间(时的函数图象,线段表示种机器人的搬运量(千克)与时间(时的函数图象.根据图象提供的信息,解答下列问题:
(1)求关于的函数解析式;
(2)如果、两种机器人连续搬运5个小时,那么种机器人比种机器人多搬运了多少千克?
在所挂物体质量不超过时,一弹簧的长度是所挂物体质量的一次函数,其图象如图所示.
(1)求与之间的函数表达式及该弹簧不挂物体时的长度;
(2)若该弹簧挂上一个物体后,弹簧长度为,求这个物体的质量.
如图,过点 的两条直线 , 分别交 轴于点 , ,其中点 在原点上方,点 在原点下方,已知 .
(1)求点 的坐标;
(2)若 的面积为4,求直线 的解析式.