如图,在正方形 ABCD中,点 P从点 A出发,沿着正方形的边顺时针方向运动一周,则△ APC的面积 y与点 P运动的路程 x之间形成的函数关系图象大致是( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中,点 是 的内心,连接 , ,过点 作 分别交 , 于点 , .已知 的周长为8, , 的周长为 ,则表示 与 的函数图象大致是
A.B.
C.D.
如图①,在 中, , ,点 是边 的中点,点 是边 上一动点,设 , .图②是 关于 的函数图象,其中 是图象上的最低点.那么 的值为 .
如图,在四边形 中, , , , , 、 、 分别是 、 、 上的点, , ,点 从点 出发,以每秒1个单位长度的速度沿折线 向点 运动,同时点 从点 出发,以相同的速度沿折线 向点 运动,当其中一个点到达后,另一个点也停止运动.设 的面积为 ,运动时间为 秒,则 与 函数关系的大致图象为
A.B.
C.D.
如图,在四边形 中, , , , , .动点 , 同时从点 出发,点 以 的速度沿 向终点 运动,点 以 的速度沿折线 向终点 运动.设点 的运动时间为 , 的面积为 ,则下列图象能大致反映 与 之间函数关系的是
A. |
|
B. |
|
C. |
|
D. |
|
如图, 和 都是边长为2的等边三角形,它们的边 , 在同一条直线 上,点 , 重合.现将 沿着直线 向右移动,直至点 与 重合时停止移动.在此过程中,设点 移动的距离为 ,两个三角形重叠部分的面积为 ,则 随 变化的函数图象大致为
A.
B.
C.
D.
如图①, 为矩形 的边 上一点,点 从点 出发沿折线 运动到点 停止,点 从点 出发沿 运动到点 停止,它们的运动速度都是 .现 , 两点同时出发,设运动时间为 , 的面积为 ,若 与 的对应关系如图②所示,则矩形 的面积是
A. |
|
B. |
|
C. |
|
D. |
|
如图 1 . 在四边形 中, , ,动点 从点 出发, 沿 的方向运动, 到达点 停止, 设点 运动的路程为 , 的面积为 ,如果 与 的函数图象如图 2 所示, 那么 边的长度为 .
如图①,在矩形 中, 是 上一点,点 从点 沿折线 运动到点 时停止;点 从点 沿 运动到点 时停止,速度均为每秒1个单位长度.如果点 、 同时开始运动,设运动时间为 , 的面积为 ,已知 与 的函数图象如图②所示,以下结论:① ;② ;③当 时, ;④当 时, 是等腰三角形;⑤当 时, ,其中正确的有
A.2个B.3个C.4个D.5个
如图,在矩形 中, , .点 从点 出发,以 的速度在矩形的边上沿 运动,点 与点 重合时停止运动.设运动的时间为 (单位: , 的面积为 (单位: ,则 随 变化的函数图象大致为
A. |
|
B. |
|
C. |
|
D. |
|
如图, 为矩形 的对角线,已知 , ,点 沿折线 以每秒1个单位长度的速度运动(运动到 点停止),过点 作 于点 ,则 的面积 与点 运动的路程 间的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
如图1,点 从 的顶点 出发,沿 匀速运动到点 ,图2是点 运动时,线段 的长度 随时间 变化的关系图象,其中 是曲线部分的最低点,则 的面积是
A.12B.24C.36D.48
如图1,点 从 的顶点 出发,沿 匀速运动到点 ,图2是点 运动时,线段 的长度 随时间 变化的关系图象,其中 为曲线部分的最低点,则 的面积是 .
如图, ,点 从 点出发,以 的速度沿 的角平分线向右运动,在运动过程中,以 为圆心的圆始终保持与 的两边相切,设 的面积为 ,则 的面积 与圆心 运动的时间 的函数图象大致为
A.B.
C.D.