如图,在直角坐标系中,点 在函数 的图象上, 轴于点 , 的垂直平分线与 轴交于点 ,与函数 的图象交于点 ,连接 , , , ,则四边形 的面积等于
A.2B. C.4D.
如图1,已知 , 轴, ,点 的坐标为 ,点 的坐标为 ,点 在第四象限,点 是 边上的一个动点.
(1)若点 在边 上, ,求点 的坐标.
(2)若点 在边 , 上,点 关于坐标轴对称的点 落在直线 上,求点 的坐标.
(3)若点 在边 , , 上,点 是 与 轴的交点,如图2,过点 作 轴的平行线 ,过点 作 轴的平行线 ,它们相交于点 ,将 沿直线 翻折,当点 的对应点落在坐标轴上时,求点 的坐标.(直接写出答案)
如图,一直线与两坐标轴的正半轴分别交于 , 两点, 是线段 上任意一点(不包括端点),过 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是
A. B. C. D.
如图1,在直角坐标系 中,直线 交 轴, 轴于点 , ,点 的坐标是 ,过点 分别作 轴、 轴的垂线,垂足为 、 ,点 是线段 上的动点,以 为对称轴,作与 成轴对称的△ .
(1)当 时,求点 的坐标.
(2)当图1中的直线 经过点 ,且 时(如图 ,求点 由 到 的运动过程中,线段 扫过的图形与 重叠部分的面积.
(3)当图1中的直线 经过点 , 时(如图 ,以 为对称轴,作与 成轴对称的△ ,连接 , ,问是否存在点 ,使得△ 与△ 相似?若存在,求出 、 的值;若不存在,请说明理由.
已知直角坐标系内有四个点 , , , ,若以 , , , 为顶点的四边形是平行四边形,则 .
如图,在平面直角坐标系中, 为坐标原点,点 的坐标为 ,菱形 的顶点 , 都在第一象限, ,将菱形绕点 按顺时针方向旋转角 得到菱形 (点 的对应点为点 , 与 交于点 ,连接 .
(1)求点 的坐标.
(2)当 时,求 的长.
(3)求证: 平分 .
(4)连接 并延长交 轴于点 ,当点 的坐标为 时,求点 的坐标.
在平面直角坐标系中,点 为原点,点 的坐标为 .如图1,正方形 的顶点 在 轴的负半轴上,点 在第二象限.现将正方形 绕点 顺时针旋转角 得到正方形 .
(1)如图2,若 , ,求直线 的函数表达式.
(2)若 为锐角, ,当 取得最小值时,求正方形 的面积.
(3)当正方形 的顶点 落在 轴上时,直线 与直线 相交于点 , 的其中两边之比能否为 ?若能,求点 的坐标;若不能,试说明理由
如图,在矩形 中,点 为坐标原点,点 的坐标为 ,点 、 在坐标轴上,点 在 边上,直线 ,直线 .
(1)分别求直线 与 轴,直线 与 的交点坐标;
(2)已知点 在第一象限,且是直线 上的点,若 是等腰直角三角形,求点 的坐标;
(3)我们把直线 和直线 上的点所组成的图形为图形 .已知矩形 的顶点 在图形 上, 是坐标平面内的点,且 点的横坐标为 ,请直接写出 的取值范围(不用说明理由).
在平面直角坐标系中,已知 , , ,若线段 与 互相平分,则点 关于坐标原点的对称点的坐标为 .
如图,在平面直角坐标系中,等腰直角三角形 的直角边 在 轴上,点 在第一象限,且 ,以点 为直角顶点, 为一直角边作等腰直角三角形 ,再以点 为直角顶点, 为直角边作等腰直角三角形 依此规律,则点 的坐标是 .
请阅读以下材料:已知向量 , , , 满足下列条件:
① ,
② (角 的取值范围是 ;
③
利用上述所给条件解答问题:
如:已知 , , ,求角 的大小;
解: ,
又
,
角 的值为 .
请仿照以上解答过程,完成下列问题:
已知 , ,求角 的大小.
如图,直线 与两坐标轴分别交于 , 两点,将线段 分成 等份,分点分别为 , , , , ,过每个分点作 轴的垂线分别交直线 于点 , , , , ,用 , , , , 分别表示 △ , △ , , △ 的面积,则 .
如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是 和 ,那么“卒”的坐标为 .