初中数学

已知关于x的一元二次方程 x 2 2 x + m 1 0 有两个实数根x1x2

(1)求m的取值范围;

(2)当时,求m的值.

来源:2016年湖北省孝感市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知关于 x的一元二次方程 ax 2+ bx+ c=0( a≠0)有两个实数根 x 1x 2,请用配方法探索有实数根的条件,并推导出求根公式,证明 x 1x 2 c a

来源:2018年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

已知关于x的方程 x - 3 )( x - 2 )﹣ p 2 0

(1)求证:无论p取何值时,方程总有两个不相等的实数根;

(2)设方程两实数根分别为x1x2,且满足 x 1 2 + x 2 2 3 x 1 x 2 ,求实数p的值.

来源:2016年湖北省十堰市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

关于x的方程(k﹣1)x2+2kx+2=0.

(1)求证:无论k为何值,方程总有实数根.

(2)设x1x2是方程(k﹣1)x2+2kx+2=0的两个根,记 S = x 2 x 1 + x 1 x 2 + x 1 + x 2 S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.

来源:2016年湖北省鄂州市中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

阅读理解:

材料一:若三个非零实数 x y z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x y z 构成"和谐三数组".

材料二:若关于 x 的一元二次方程 a x 2 + bx + c = 0 ( a 0 ) 的两根分别为 x 1 x 2 ,则有 x 1 + x 2 = - b a x 1 · x 2 = c a

问题解决:

(1)请你写出三个能构成"和谐三数组"的实数    

(2)若 x 1 x 2 是关于 x 的方程 a x 2 + bx + c = 0 ( a b c 均不为 0 ) 的两根, x 3 是关于 x 的方程 bx + c = 0 ( b c 均不为 0 ) 的解.求证: x 1 x 2 x 3 可以构成"和谐三数组";

(3)若 A ( m , y 1 ) B ( m + 1 , y 2 ) C ( m + 3 , y 3 ) 三个点均在反比例函数 y = 4 x 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 m 的值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-25
  • 题型:未知
  • 难度:未知

阅读理解:

材料一:若三个非零实数 x y z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x y z 构成"和谐三数组".

材料二:若关于 x 的一元二次方程 a x 2 + bx + c = 0 ( a 0 ) 的两根分别为 x 1 x 2 ,则有 x 1 + x 2 = - b a x 1 · x 2 = c a

问题解决:

(1)请你写出三个能构成"和谐三数组"的实数    

(2)若 x 1 x 2 是关于 x 的方程 a x 2 + bx + c = 0 ( a b c 均不为 0 ) 的两根, x 3 是关于 x 的方程 bx + c = 0 ( b c 均不为 0 ) 的解.求证: x 1 x 2 x 3 可以构成"和谐三数组";

(3)若 A ( m , y 1 ) B ( m + 1 , y 2 ) C ( m + 3 , y 3 ) 三个点均在反比例函数 y = 4 x 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 m 的值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“函数”,其图象上关于原点对称的两点叫做一对“点”.根据该约定,完成下列各题.

(1)在下列关于的函数中,是“函数”的,请在相应题目后面的括号中打“”,不是“函数”的打“”.

  

  

  

(2)若点与点是关于的“函数” 的一对“点”,且该函数的对称轴始终位于直线的右侧,求的值或取值范围.

(3)若关于的“函数” 是常数)同时满足下列两个条件:①,②,求该“函数”截轴得到的线段长度的取值范围.

来源:2020年湖南省长沙市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + 1 2 k 2 - 2 = 0

(1)求证:无论 k 为何实数,方程总有两个不相等的实数根;

(2)若方程的两个实数根 x 1 x 2 满足 x 1 - x 2 = 3 ,求 k 的值.

来源:2020年湖北省孝感市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( 2 m + 1 ) x + m - 2 = 0

(1)求证:无论 m 取何值,此方程总有两个不相等的实数根;

(2)若方程有两个实数根 x 1 x 2 ,且 x 1 + x 2 + 3 x 1 x 2 = 1 ,求 m 的值.

来源:2020年湖北省随州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - 4 x - 2 k + 8 = 0 有两个实数根 x 1 x 2

(1)求 k 的取值范围;

(2)若 x 1 3 x 2 + x 1 x 2 3 = 24 ,求 k 的值.

来源:2020年湖北省十堰市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知:关于 x 的一元二次方程 x 2 + m x - 2 = 0 有两个实数根.

(1)求 m 的取值范围;

(2)设方程的两根为 x 1 x 2 ,且满足 ( x 1 - x 2 ) 2 - 17 = 0 ,求 m 的值.

来源:2020年湖北省黄石市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知关于的方程有两实数根.

(1)求的取值范围;

(2)设方程两实数根分别为,且,求实数的值.

来源:2020年湖北省鄂州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知关于的一元二次方程有两个不相等的实数根

(1)若为正整数,求的值;

(2)若满足,求的值.

来源:2019年湖北省孝感市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知关于的一元二次方程有两个不相等的实数根

(1)求的取值范围;

(2)若,求的值及方程的根.

来源:2019年湖北省随州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知关于的一元二次方程有两个不相等的实数根

(1)求的取值范围;

(2)若,且为整数,求的值.

来源:2019年湖北省十堰市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

初中数学根与系数的关系解答题