已知关于x的一元二次方程 有两个实数根x1,x2.
(1)求m的取值范围;
(2)当时,求m的值.
已知关于 x的一元二次方程 ax 2+ bx+ c=0( a≠0)有两个实数根 x 1, x 2,请用配方法探索有实数根的条件,并推导出求根公式,证明 x 1• x 2= .
已知关于x的方程 .
(1)求证:无论p取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1,x2,且满足 ,求实数p的值.
关于x的方程(k﹣1)x2+2kx+2=0.
(1)求证:无论k为何值,方程总有实数根.
(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记 ,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.
阅读理解:
材料一:若三个非零实数 , , 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 , , 构成"和谐三数组".
材料二:若关于 的一元二次方程 的两根分别为 , ,则有 , .
问题解决:
(1)请你写出三个能构成"和谐三数组"的实数 ;
(2)若 , 是关于 的方程 , , 均不为 的两根, 是关于 的方程 , 均不为 的解.求证: , , 可以构成"和谐三数组";
(3)若 , , 三个点均在反比例函数 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 的值.
阅读理解:
材料一:若三个非零实数 , , 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 , , 构成"和谐三数组".
材料二:若关于 的一元二次方程 的两根分别为 , ,则有 , .
问题解决:
(1)请你写出三个能构成"和谐三数组"的实数 ;
(2)若 , 是关于 的方程 , , 均不为 的两根, 是关于 的方程 , 均不为 的解.求证: , , 可以构成"和谐三数组";
(3)若 , , 三个点均在反比例函数 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 的值.
我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“函数”,其图象上关于原点对称的两点叫做一对“点”.根据该约定,完成下列各题.
(1)在下列关于的函数中,是“函数”的,请在相应题目后面的括号中打“”,不是“函数”的打“”.
① ;
② ;
③ .
(2)若点与点是关于的“函数” 的一对“点”,且该函数的对称轴始终位于直线的右侧,求,,的值或取值范围.
(3)若关于的“函数” ,,是常数)同时满足下列两个条件:①,②,求该“函数”截轴得到的线段长度的取值范围.
已知关于 的一元二次方程 .
(1)求证:无论 为何实数,方程总有两个不相等的实数根;
(2)若方程的两个实数根 , 满足 ,求 的值.
已知关于 的一元二次方程 .
(1)求证:无论 取何值,此方程总有两个不相等的实数根;
(2)若方程有两个实数根 , ,且 ,求 的值.
已知关于 的一元二次方程 有两个实数根 , .
(1)求 的取值范围;
(2)若 ,求 的值.
已知:关于 的一元二次方程 有两个实数根.
(1)求 的取值范围;
(2)设方程的两根为 、 ,且满足 ,求 的值.
已知关于的方程有两实数根.
(1)求的取值范围;
(2)设方程两实数根分别为、,且,求实数的值.
已知关于的一元二次方程有两个不相等的实数根,.
(1)若为正整数,求的值;
(2)若,满足,求的值.
已知关于的一元二次方程有两个不相等的实数根,.
(1)求的取值范围;
(2)若,求的值及方程的根.