初中数学

如图,在 ΔABC 中, ACB = 90 ° ,以点 B 为圆心, BC 长为半径画弧,交线段 AB 于点 D ;以点 A 为圆心, AD 长为半径画弧,交线段 AC 于点 E ,连接 CD

(1)若 A = 28 ° ,求 ACD 的度数.

(2)设 BC = a AC = b

①线段 AD 的长是方程 x 2 + 2 ax b 2 = 0 的一个根吗?说明理由.

②若 AD = EC ,求 a b 的值.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

“杂交水稻之父” 袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.

(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;

(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.

(1)设矩形的相邻两边长分别为 x y

①求 y 关于 x 的函数表达式;

②当 y 3 时,求 x 的取值范围;

(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

某工厂有甲、乙两个车间,甲车间生产 A 产品,乙车间生产 B 产品,去年两个车间生产产品的数量相同且全部售出.已知 A 产品的销售单价比 B 产品的销售单价高100元,1件 A 产品与1件 B 产品售价和为500元.

(1) A B 两种产品的销售单价分别是多少元?

(2)随着 5 G 时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制 B 产品的生产车间.预计 A 产品在售价不变的情况下产量将在去年的基础上增加 a % B 产品产量将在去年的基础上减少 a % ,但 B 产品的销售单价将提高 3 a % .则今年 A B 两种产品全部售出后总销售额将在去年的基础上增加 29 25 a % .求 a 的值.

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 2 x + a = 0 的两实数根 x 1 x 2 满足 x 1 x 2 + x 1 + x 2 > 0 ,求 a 的取值范围.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.

用点A1A2A3A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:

(1)填写上图中第四个图中y的值为  ,第五个图中y的值为  

(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为   ,当 x 48 时,对应的y     

(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 m x 2 + ( 1 5 m ) x 5 = 0 ( m 0 )

(1)求证:无论 m 为任何非零实数,此方程总有两个实数根;

(2)若抛物线 y = m x 2 + ( 1 5 m ) x 5 x 轴交于 A ( x 1 0 ) B ( x 2 0 ) 两点,且 | x 1 x 2 | = 6 ,求 m 的值;

(3)若 m > 0 ,点 P ( a , b ) Q ( a + n , b ) 在(2)中的抛物线上(点 P Q 不重合),求代数式 4 a 2 n 2 + 8 n 的值.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0

(1)求证:无论 k 取何值,方程都有两个不相等的实数根.

(2)如果方程的两个实数根为 x 1 x 2 ,且 k x 1 x 2 都为整数,求 k 所有可能的值.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.

(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;

(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对 A B 两个小麦品种进行种植对比实验研究.去年 A B 两个品种各种植了10亩.收获后 A B 两个品种的售价均为2.4元 / kg ,且 B 的平均亩产量比 A 的平均亩产量高 100 kg A B 两个品种全部售出后总收入为21600元.

(1)请求出 A B 两个品种去年平均亩产量分别是多少?

(2)今年,科技小组加大了小麦种植的科研力度,在 A B 种植亩数不变的情况下,预计 A B 两个品种平均亩产量将在去年的基础上分别增加 a % 2 a % .由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨 a % ,而 A 品种的售价不变. A B 两个品种全部售出后总收入将在去年的基础上增加 20 9 a % .求 a 的值.

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称"堂食"小面),也可购买搭配佐料的袋装生面(简称"生食"小面).已知3份"堂食"小面和2份"生食"小面的总售价为31元,4份"堂食"小面和1份"生食"小面的总售价为33元.

(1)求每份"堂食"小面和"生食"小面的价格分别是多少元?

(2)该面馆在4月共卖出"堂食"小面4500份,"生食"小面2500份.为回馈广大食客,该面馆从5月1日起每份"堂食"小面的价格保持不变,每份"生食"小面的价格降低 3 4 a % .统计5月的销量和销售额发现:"堂食"小面的销量与4月相同,"生食"小面的销量在4月的基础上增加 5 2 a % ,这两种小面的总销售额在4月的基础上增加 5 11 a % .求 a 的值.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

小敏与小霞两位同学解方程 3 ( x - 3 ) = ( x - 3 ) 2 的过程如下框:

小敏:

两边同除以 ( x - 3 ) ,得

3 = x - 3

x = 6

小霞:

移项,得 3 ( x - 3 ) - ( x - 3 ) 2 = 0

提取公因式,得 ( x - 3 ) ( 3 - x - 3 ) = 0

x - 3 = 0 3 - x - 3 = 0

解得 x 1 = 3 x 2 = 0

你认为他们的解法是否正确?若正确请在框内打“ ”;若错误请在框内打“ × ”,并写出你的解答过程.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + x - m = 0

(1)若方程有两个不相等的实数根,求 m 的取值范围;

(2)二次函数 y = x 2 + x - m 的部分图象如图所示,求一元二次方程 x 2 + x - m = 0 的解.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

列方程(组 ) 解应用题

某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为 600 m 2 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长 35 m ,另外三面用 69 m 长的篱笆围成,其中一边开有一扇 1 m 宽的门(不包括篱笆).求这个茶园的长和宽.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为 x ( x 为正整数),每个月的销售利润为 y 元.

(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?

(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

来源:2017年四川省甘孜州中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

初中数学一元二次方程解答题