初中数学

为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.

(1)求这两年藏书的年均增长率;

(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的 5 . 6 % ,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?

来源:2019年广西贵港市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.

(1)求该市这两年投入基础教育经费的年平均增长率;

(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的 5 % 购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?

来源:2017年广西桂林市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.

(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;

(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长 a % ,求 a 的值至少是多少?

来源:2017年广西北海市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

我们规定:若 m = ( a , b ) n = ( c , d ) ,则 m · n = ac + bd .如 m = ( 1 , 2 ) n = ( 3 , 5 ) ,则 m · n = 1 × 3 + 2 × 5 = 13

(1)已知 m = ( 2 , 4 ) n = ( 2 , 3 ) ,求 m · n

(2)已知 m = ( x a , 1 ) n = ( x a , x + 1 ) ,求 y = m · n ,问 y = m · n 的函数图象与一次函数 y = x 1 的图象是否相交,请说明理由.

来源:2016年四川省雅安市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

红旗连锁超市花2000购进一批糖果,按 80 % 的利润定价无人购买,决定降价出售,但仍无人购买.结果又一次降价后才售完,但仍盈利 45 . 8 % ,两次降价的百分率相同,问每次降价的百分率是多少?

来源:2016年四川省遂宁市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 6 x + ( 2 m + 1 ) = 0 有实数根.

(1)求 m 的取值范围;

(2)如果方程的两个实数根为 x 1 x 2 ,且 2 x 1 x 2 + x 1 + x 2 20 ,求 m 的取值范围.

来源:2016年四川省南充市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元 / 瓶,经过连续两次降价后,现在仅卖98元 / 瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.

来源:2016年四川省巴中市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

已知关于x的方程 x 2 ﹣( 2 m + 1 x + m m + 1 )= 0

(1)求证:方程总有两个不相等的实数根;

(2)已知方程的一个根为 x 0 ,求代数式 2 m 1 2 + 3 + m )( 3 m + 7 m 5 的值(要求先化简再求值).

来源:2016年湖南省岳阳市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.

(1)求该种商品每次降价的百分率;

(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元.问第一次降价后至少要售出该种商品多少件?

来源:2016年湖南省永州市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

关于x的一元二次方程 x 2 + 2 x + 2 m 0 有两个不相等的实数根.

(1)求m的取值范围;

(2)若x1x2是一元二次方程 x 2 + 2 x + 2 m 0 的两个根,且 x 1 2 + x 2 2 8 ,求m的值.

来源:2016年黑龙江省绥化市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,AB两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.

(1)求A品牌产销线2018年的销售量;

(2)求B品牌产销线2016年平均每份获利增长的百分数.

来源:2016年湖北省宜昌市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知关于x的一元二次方程 x 2 2 x + m 1 0 有两个实数根x1x2

(1)求m的取值范围;

(2)当时,求m的值.

来源:2016年湖北省孝感市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

随着粤港澳大湾区建设的加速推进,广东省正加速布局以5 G等为代表的战略性新兴产业,据统计,目前广东5 G基站的数量约1.5万座,计划到2020年底,全省5 G基站数是目前的4倍,到2022年底,全省5 G基站数量将达到17.34万座.

(1)计划到2020年底,全省5 G基站的数量是多少万座?

(2)按照计划,求2020年底到2022年底,全省5 G基站数量的年平均增长率.

来源:2019年广东省广州市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

已知关于 x的一元二次方程 ax 2+ bx+ c=0( a≠0)有两个实数根 x 1x 2,请用配方法探索有实数根的条件,并推导出求根公式,证明 x 1x 2 c a

来源:2018年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

工人师傅用一块长为12分米,宽为8分米的矩形铁皮制作一个无盖长方体容器,需要将四角各裁掉一个正方形.(厚度不计)

(1)请在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求当长方体底面面积为32平方分米时,裁掉的正方形边长是多少?

(2)若要求制作的长方体的底面长不大于底面宽的5倍(长大于宽),并将容器外表面进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,求裁掉的正方形边长为多少时,总费用最低,最低费用为多少元?

来源:2018年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

初中数学一元二次方程解答题