初中数学

已知关于x的方程 x - 3 )( x - 2 )﹣ p 2 0

(1)求证:无论p取何值时,方程总有两个不相等的实数根;

(2)设方程两实数根分别为x1x2,且满足 x 1 2 + x 2 2 3 x 1 x 2 ,求实数p的值.

来源:2016年湖北省十堰市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

解方程组 9 x 2 - 4 y 2 = 36 x - y = 2

来源:2016年湖北省黄石市中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

关于x的方程(k﹣1)x2+2kx+2=0.

(1)求证:无论k为何值,方程总有实数根.

(2)设x1x2是方程(k﹣1)x2+2kx+2=0的两个根,记 S = x 2 x 1 + x 1 x 2 + x 1 + x 2 S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.

来源:2016年湖北省鄂州市中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为 x,面积为 S平方米.

(1)求 Sx之间的函数关系式,并写出自变量 x的取值范围;

(2)设计费能达到24000元吗?为什么?

(3)当 x是多少米时,设计费最多?最多是多少元?

来源:2017年内蒙古包头市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

某地的特色农产品在市场上颇具竞争力,其中香菇远销全国各地,上市时,外商王经理按市场价格10元/千克在该市收购了1800千克香菇存放入冷库中,据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计240元,而且香菇在冷库中最多保存90天,同时,平均每天有6千克的香菇损耗不能出售.

(1)若存放 x天后,将这批香菇一次性出售,设这批香菇的销售总金额为 y元,试写出 yx之间的函数关系式.

(2)王经理想获得利润22500元,需将这批香菇存放多少天后出售?

(3)王经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

来源:2016年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的 17 80

(1)求配色条纹的宽度;

(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.

来源:2016年内蒙古赤峰市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

已知关于x的方程x2+mx+m﹣2=0.

(1)若此方程的一个根为1,求m的值;

(2)求证:不论m取何实数,此方程都有两个不相等的实数根.

来源:2016年甘肃省临夏州中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

一个矩形周长为56厘米.

(1)当矩形面积为180平方厘米时,长宽分别为多少?

(2)能围成面积为200平方厘米的矩形吗?请说明理由.

来源:2017年广东省深圳市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.

(1)求2014年至2016年该地区投入教育经费的年平均增长率;

(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.

(参考数据: 1 . 21 = 1 . 1 , 1 . 44 = 1 . 2 , 1 . 69 = 1 . 3 , 1 . 96 = 1 . 4

来源:2016年广西贺州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.

(1)求2014至2016年该市投入科研经费的年平均增长率;

(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.

来源:2016年广西贵港市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

在直角墙角AOBOAOB,且OAOB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2

(1)求这地面矩形的长;

(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?

来源:2016年广西百色市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

阅读理解:

材料一:若三个非零实数 x y z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x y z 构成"和谐三数组".

材料二:若关于 x 的一元二次方程 a x 2 + bx + c = 0 ( a 0 ) 的两根分别为 x 1 x 2 ,则有 x 1 + x 2 = - b a x 1 · x 2 = c a

问题解决:

(1)请你写出三个能构成"和谐三数组"的实数    

(2)若 x 1 x 2 是关于 x 的方程 a x 2 + bx + c = 0 ( a b c 均不为 0 ) 的两根, x 3 是关于 x 的方程 bx + c = 0 ( b c 均不为 0 ) 的解.求证: x 1 x 2 x 3 可以构成"和谐三数组";

(3)若 A ( m , y 1 ) B ( m + 1 , y 2 ) C ( m + 3 , y 3 ) 三个点均在反比例函数 y = 4 x 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 m 的值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-25
  • 题型:未知
  • 难度:未知

"通过等价变换,化陌生为熟悉,化未知为已知"是数学学习中解决问题的基本思维方式,例如:解方程 x - x = 0 ,就可以利用该思维方式,设 x = y ,将原方程转化为: y 2 - y = 0 这个熟悉的关于 y 的一元二次方程,解出 y ,再求 x ,这种方法又叫"换元法".请你用这种思维方式和换元法解决下面的问题.

已知实数 x y 满足 5 x 2 y 2 + 2 x + 2 y = 133 x + y 4 + 2 x 2 y 2 = 51 ,求 x 2 + y 2 的值.

来源:2020年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

某水果店将标价为10元 / 斤的某种水果.经过两次降价后,价格为8.1元 / 斤,并且两次降价的百分率相同.

(1)求该水果每次降价的百分率;

(2)从第二次降价的第1天算起,第 x ( x 为整数)的销量及储藏和损耗费用的相关信息如下表所示:

时间(天)

x

销量(斤)

120 - x

储藏和损耗费用(元)

3 x 2 - 64 x + 400

已知该水果的进价为4.1元 / 斤,设销售该水果第 x (天)的利润为 y (元),求 y x ( 1 x < 10 ) 之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

阅读理解:

材料一:若三个非零实数 x y z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x y z 构成"和谐三数组".

材料二:若关于 x 的一元二次方程 a x 2 + bx + c = 0 ( a 0 ) 的两根分别为 x 1 x 2 ,则有 x 1 + x 2 = - b a x 1 · x 2 = c a

问题解决:

(1)请你写出三个能构成"和谐三数组"的实数    

(2)若 x 1 x 2 是关于 x 的方程 a x 2 + bx + c = 0 ( a b c 均不为 0 ) 的两根, x 3 是关于 x 的方程 bx + c = 0 ( b c 均不为 0 ) 的解.求证: x 1 x 2 x 3 可以构成"和谐三数组";

(3)若 A ( m , y 1 ) B ( m + 1 , y 2 ) C ( m + 3 , y 3 ) 三个点均在反比例函数 y = 4 x 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 m 的值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

初中数学一元二次方程解答题