为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.
(1)求该市这两年投入基础教育经费的年平均增长率;
(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的 5 % 购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?
如图,已知 A(6,0), B(8,5),将线段 OA平移至 CB,点 D在 x轴正半轴上(不与点 A重合),连接 OC, AB, CD, BD.
(1)求对角线 AC的长;
(2)设点 D的坐标为( x,0),△ ODC与△ ABD的面积分别记为 S 1, S 2.设 S= S 1﹣ S 2,写出 S关于 x的函数解析式,并探究是否存在点 D使 S与△ DBC的面积相等?如果存在,用坐标形式写出点 D的位置;如果不存在,说明理由.
下表是随机抽取的某公司部分员工的月收入资料.
月收入/元
45000
18000
10000
5500
5000
3400
3000
2000
人数
1
3
6
11
2
(1)请计算以上样本的平均数和中位数;
(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;
(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收入水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.
如图,已知 A、 F、 C、 D四点在同一条直线上, AF= CD, AB∥ DE,且 AB= DE.
(1)求证:△ ABC≌△ DEF;
(2)若 EF=3, DE=4,∠ DEF=90°,请直接写出使四边形 EFBC为菱形时 AF的长度.
(1)【操作发现】
如图1,将△ ABC绕点 A顺时针旋转60°,得到△ ADE,连接 BD,则∠ ABD= 度.
(2)【类比探究】
如图2,在等边三角形 ABC内任取一点 P,连接 PA, PB, PC,求证:以 PA, PB, PC的长为三边必能组成三角形.
(3)【解决问题】
如图3,在边长为 7 的等边三角形 ABC内有一点 P,∠ APC=90°,∠ BPC=120°,求△ APC的面积.
(4)【拓展应用】
如图4是 A, B, C三个村子位置的平面图,经测量 AC=4, BC=5,∠ ACB=30°, P为△ ABC内的一个动点,连接 PA, PB, PC.求 PA+ PB+ PC的最小值.
如图①,直线 y= 1 2 x﹣3与 x轴、 y轴分别交于点 B, C,抛物线 y= 1 4 x 2 + bx+ c过 B, C两点,且与 x轴的另一个交点为点 A,连接 AC.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点 D(与点 A不重合),使得 S △ DBC= S △ ABC,若存在,求出点 D的坐标;若不存在,请说明理由;
(3)有宽度为2,长度足够长的矩形(阴影部分)沿 x轴方向平移,与 y轴平行的一组对边交抛物线于点 P和点 Q,交直线 CB于点 M和点 N,在矩形平移过程中,当以点 P, Q, M, N为顶点的四边形是平行四边形时,求点 M的坐标.