北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销.商场又用68000元购进第二批这种运动服,所够数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种牌运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?()
已知:如图,△ABC中,AB=AC,∠BAC=90°,若CD⊥BD于D点,且BD交AC于E点,问当BD满足什么条件时,CD=BE?并证明你的判断.
如图1,在△ABC,∠A=45°,延长CB至D,使得BD=BC.(1)若∠ACB=90°,求证:BD=AC;(2)如图2,分别过点D和点C作AB所在直线的垂线,垂足分别为E、F,求证:DE=CF;(3)如图3,若将(1)中“∠ACB=90°”改为“∠ACB=m°,并在AB延长线上取点G,使得∠1=∠A”.试探究线段AC、DG的数量与位置关系.
已知:如图,△ABC中,AD⊥BC于点D,AD=DC,∠FCD=∠BAD,点F在AD上,BF的延长线交AC于点E.(1)求证:BE⊥AC;(2)设CE的长为m,用含m的代数式表示AC+BF.
如图1,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形.(2)将△ADE绕点A逆时针旋转45°,如图2中的“△BMD为等腰直角三角形”是否仍然成立?请说明理由.(3)将△ADE绕点A逆时针旋转135°,如图3中的“△BMD为等腰直角三角形”成立吗?(不用说明理由).(4)我们是否可以猜想,将△ADE绕点A任意旋转一定的角度,如图4中的“△BMD为等腰直角三角形”均成立?(不用说明理由).
已知:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.