【原创】(本小题满分12分)已知.
(Ⅰ)求函数的最小正周期和对称中心;
(Ⅱ)将函数的图象向右平移个单位,得到函数的图象,当时,方程有实数解,求实数的取值范围.
已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。
(本小题满分14分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).
(1)求的极值;
(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由果园承担.
若果园恰能在约定日期(月日)将水果送到,则销售商一次性支付给果园20万元; 若在约定日期前送到,每提前一天销售商将多支付给果园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.
为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果,已知下表内的信息:
统计信息 汽车行驶路线 |
不堵车的情况下到达城市乙所需 时间(天) |
堵车的情况下到达城市乙所需时间(天) |
堵车的概率 |
运费(万元) |
公路1 |
2 |
3 |
||
公路2 |
1 |
4 |
(注:毛利润销售商支付给果园的费用运费)
(1)记汽车走公路1时果园获得的毛利润为(单位:万元),求的分布列和数学期望;
(2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?
设椭圆:的左、右焦点分别是、,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于、两点,求面积的最大值.
设函数().
(1)当时,求过点且与曲线相切的切线方程;
(2)求函数的单调递增区间;
(3)若函数有两个极值点,,且,记表示不大于的最大整数,试比较与的大小.
已知定点,,定直线:,动点与点的距离是它到直线的距离的.设点的轨迹为,过点的直线交于、两点,直线、与直线分别相交于、两点.
(1)求的方程;
(2)以为直径的圆是否恒过一定点?若是,求出定点坐标;若不是,请说明理由.
已知点、为双曲线:的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值;
(3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:.
已知椭圆的,离心率为,是其焦点,点在椭圆上。
(Ⅰ)若,且的面积等于。求椭圆的方程;
(Ⅱ)直线交椭圆于另一点,分别过点作直线的垂线,交轴于点,当取最小值时,求直线的斜率。
已知椭圆的,离心率为,是其焦点,点在椭圆上。
(Ⅰ)若,且的面积等于。求椭圆的方程;
(Ⅱ)直线交椭圆于另一点,分别过点作直线的垂线,交轴于点,
当取最小值时,求直线的斜率。
(本小题满分14分)已知直线l:与双曲线C:()相交于B、D两点,且BD的中点为M(1,3).
(1)求双曲线C的离心率;
(2)设双曲线C的右顶点为A,右焦点为F,,试判断△ABD是否为直角三角形,并说明理由.
(本小题满分14分)已知函数(),.
(1)讨论的单调区间;(2)是否存在时,对于任意的,都有恒成立?若存在,求出m的取值范围;若不存在,请说明理由.