选修4-4:坐标系与参数方程
已知平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线方程为; 的参数方程为(为参数).
(Ⅰ)写出曲线的直角坐标方程和的普通方程;
(Ⅱ)设点为曲线上的任意一点,求点 到曲线距离的取值范围.
选修4-4:坐标系与参数方程
已知平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线方程为.的参数方程为(为参数).
(Ⅰ)写出曲线的直角坐标方程和的普通方程;
(Ⅱ)设点为曲线上的任意一点,求点到曲线距离的取值范围.
如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.
(1)证明:PB∥平面ACM;
(2)证明:AD⊥平面PAC.
已知函数.
(Ⅰ)求证:不论a为何实数f(x)在(﹣∞,+∞)上为增函数;
(Ⅱ)若f(x)为奇函数,求a的值;
(Ⅲ)在(Ⅱ)的条件下,求f(x)在区间[1,5)上的最小值.
已知是定义在内的增函数,且满足.
(Ⅰ)求;
(Ⅱ)求不等式的解集.