设函数的最小正周期为,是函数图象的一个对称中心,且曲线在该点处切线的斜率为.
(1)求a,b,的值;
(2)若角的终边不共线,且,求的值;
(3)若函数的图象与函数的图象关于直线对称,判断:曲线上是否存在与直线(c为常数)垂直的切线?证明你的结论.
已知曲线(为参数)在同一直角坐标系中,将曲线上的点按坐标变换得到曲线,
(1)求曲线的普通方程;
(2)若点在曲线上,点,当在曲线上运动时,求中点的轨迹方程。
已知抛物线方程为,
(1)直线过抛物线的焦点,且垂直于轴,与抛物线交于两点,求的长度。
(2)直线过抛物线的焦点,且倾斜角为,直线与抛物线相交于两点,为原点。求△的面积。
某公司计划2015年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元,问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大?最大收益是多少万元?
已知抛物线:,过点的直线交抛物线于,两点.
(1)若抛物线的焦点为,求该抛物线的方程;
(2)已知过点,分别作抛物线的切线,,交于点,以线段为直径的圆经过点,求实数的值.
已知命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;命题q:函数f(x)=-(5-2a)x是减函数,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.