高中数学

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数的图像与直线相切于点.
(1)求的值;
(2)讨论函数的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数,记.
(1)求曲线处的切线方程;
(2)求函数的单调区间;
(3)当时,若函数没有零点,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)已知函数,其中为自然对数的底数.
(Ⅰ)当时,求曲线处的切线与坐标轴围成的面积;
(Ⅱ)若函数存在一个极大值点和一个极小值点,且极大值与极小值的积为,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数(,为自然对数的底数).
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当的值时,若直线与曲线没有公共点,求的最大值.
(注:可能会用到的导数公式:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数处切线为.
(1)求的解析式;
(2)设表示直线的斜率,求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数与函数在点处有公共的切线,设.
(1) 求的值
(2)求在区间上的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数与函数在点处有公共的切线,设.
(1) 求的值
(2)求在区间上的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数),其中
(1)若曲线在点处相交且有相同的切线,求的值;
(2)设,若对于任意的,函数在区间上的值恒为负数,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若有最值,求实数的取值范围;
(2)当时,若存在,使得曲线处的切线互相平行,求证

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数处取得极值2
(1)求函数的表达式;
(2)当满足什么条件时,函数在区间上单调递增?
(3)若图象上任意一点,直线与的图象相切于点P,求直线的斜率的取值范围

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若,求处的切线方程;
(2)若在R上是增函数,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题