吉林省长春市高中毕业班第二次调研测试文科数学试卷
已知命题:函数的图象恒过定点;命题:若函数为偶函数,则函数 的图像关于直线对称,则下列命题为真命题的是( )
A. | B. |
C. | D. |
以下四个命题:
①从匀速传递的产品生产流水线上,质检员每分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个变量的线性相关性越强,则它们的相关系数的绝对值越接近于;
③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
④对分类变量与的随机变量K2的观测值k来说,k越小,判断“与有关系”的把握越大.其中真命题的序号为( )
A.①④ | B.②④ | C.①③ | D.②③ |
已知直线与双曲线交于,两点(,不在同一支上),为双曲线的两个焦点,则在( )
A.以,为焦点的双曲线上 | B.以,为焦点的椭圆上 |
C.以,为直径两端点的圆上 | D.以上说法均不正确 |
设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为( )
A. | B. |
C. | D. |
如图,在长方体中,分别是棱,上的点(点与不重合),且∥,过的平面与棱,相交,交点分别为.设,,.在长方体内随机选取一点,则该点取自于几何体内的概率为 .
对某电子元件进行寿命追踪调查,所得样本数据的频率分布直方图如下.
(1)求,并根据图中的数据,用分层抽样的方法抽取个元件,元件寿命落在之间的应抽取几个?
(2)从(1)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个元件寿命落在之间,一个元件寿命落在之间”的概率.
如图,已知四棱锥,底面是等腰梯形,且∥,是中点,平面,, 是中点.
(1)证明:平面平面;(2)求点到平面的距离.
如图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于,两点,且、、三点互不重合.
(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.
如图,是圆的直径,是延长线上的一点,是圆的割线,过点作的垂线,交直线于点,交直线 于点,过点作圆的切线,切点为.
(1)求证:四点共圆;(2)若,求的长.
已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求圆的直角坐标方程;
(2)若是直线与圆面≤的公共点,求的取值范围.