如图,已知四棱锥,底面是等腰梯形,且∥,是中点,平面,, 是中点.(1)证明:平面平面;(2)求点到平面的距离.
选修4-5:不等式选讲 已知函数。(1)解不等式;(2)若,且,求证:。
选修4-4坐标系与参数方程设直线的参数方程为(t为参数),若以直角坐标系的点为极点,轴为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程为=.(1)将曲线的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线与曲线交于A、B两点,求.
选修4—1:几何证明选讲在中,,过点A的直线与其外接圆交于点P,交BC延长线于点D。(1)求证: ;(2)若AC=3,求的值。
已知函数,且.(1)求的值;(2)求函数的单调区间;(3)设函数,若函数在上单调递增,求实数的取值范围.
曲线C上任一点到定点(0,)的距离等于它到定直线的距离.(1)求曲线C的方程;(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且⊥,设是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.