已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的直角坐标方程;(2)若是直线与圆面≤的公共点,求的取值范围.
(本小题满分12分)已知椭圆E的两个焦点分别为F1(-1,0), F2 (1,0), 点(1, )在椭圆E上.(1)求椭圆E的方程(2)若椭圆E上存在一点 P, 使∠F1PF2=30°, 求△PF1F2的面积.
.(本小题满分12分)已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;(2)求截面AEF与底面ABCD的夹角的大小.
(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,(1)写出月销售量Q(百件)与销售价格P(元)的函数关系。(2)该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?(3)当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。
(本小题满分12分)直线l经过点,且和圆C:相交,截得弦长为,求l的方程.
(本小题满分12分)已知函数f(x)=lg(ax-bx)(a>1>b>0).(1)求y=f(x)的定义域;(2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.