如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.(Ⅰ)若,求抛物线的方程;(Ⅱ)求△ABM面积的最大值.
(本小题满分15分)已知函数。 (1)求的单调区间; (2)函数,求证:时的图象都不在图象的上方.
如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。 (1)若AA1=2,求证:; (2)若AA1=3,求二面角C1—BD—C的余弦值.
(本小题满分14分)已知数列的每项均为正数,首项记数列前项和为,满足. (1)求的值及数列的通项公式; (2)若,记数列前项和为,求证:.
(本小题满分14分)已知向量,其中,函数. (1)求的对称中心; (2)若,其中,求的值.
已知函数. (Ⅰ)当时,求函数的单调区间; (Ⅱ)是否存在实数,使得函数有唯一的极值,且极值大于?若存在,,求的取值 范围;若不存在,说明理由; (Ⅲ)如果对,总有,则称是的凸 函数,如果对,总有,则称是的凹函数.当时,利用定义分析的凹凸性,并加以证明。