如图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于,两点,且、、三点互不重合.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.
已知F1、F2是椭圆的两个焦点,O为坐标原点,点P)在椭圆上,线段PF2与y轴的交点M满足;(1)求椭圆的标准方程;(2)⊙O是以F1F2为直径的圆,一直线l: y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B.当,且满足时,求△AOB面积S的取值范围.
直线与椭圆交于A、B两点,记△ABO的面积为S.(1) 求在k = 0,0 < b < 1的条件下,S的最大值;(2) 当 | AB | = 2,S = 1时,求直线AB的方程.
某集团设资兴办甲、乙两个企业,2005年甲企业获利润32万元,乙企业获利润72万元,以后每年甲企业的利润以上一年的1.5倍递增.而乙企业的利润是上一年利润的,预期目标为两企业年利润之和为160万元,以2006年初起.(1) 哪一年两企业获利之和最小,最小值为多少?(2) 经过几年可以达到预期目标?(精确到年)
已知在曲线上(),且(1)求数列的通项公式;(2)设数列的前n项和为Tn,且满足,试确定b1的值,使得是等差数列.
已知为实常数),且,其图象和y轴交于A点;数列为公差为的等差数列,且;点列(1)求函数的表达式;(2)设为直线的斜率,的斜率,求证数仍为等差数列;(3)已知m为一给定自然数,常数a满足,求证数列有唯一的最大项.