(本题12分)在平面直角坐标系中,已知椭圆的离心率为,其焦点在圆上.⑴求椭圆的方程;⑵设、、是椭圆上的三点(异于椭圆顶点),且存在锐角,使.①试求直线与的斜率的乘积;②试求的值.
已知二次函数(为参数,)求证此抛物线顶点的轨迹是双曲线.
(2) 已知、都是正数,且,求证:.
(1) 设均为正数,且,求证
(2)长为的线段两端点分别在直角坐标轴上移动,从原点向该线段作垂线,垂足为,求的轨迹的极坐标方程.
如图所示,为⊙的直径,、为⊙的切线,、为切点 (1)求证: (2)若⊙的半径为,求AD·OC的值.