已知动圆过定点(1,0),且与直线相切.(1)求动圆圆心的轨迹方程;(2)设是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,①当时,求证直线恒过一定点;②若为定值,直线是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.
已知直线与椭圆相交于两个不同的点,记与轴的交点为. (Ⅰ)若,且,求实数的值; (Ⅱ)若,求面积的最大值,及此时椭圆的方程.
如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且. (1)证明:平面平面; (2)求直线和平面所成角的正弦值.
为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12. (Ⅰ)求该校报考飞行员的总人数; (Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
在中,已知. (Ⅰ)求sinA与角B的值; (Ⅱ)若角A,B,C的对边分别为的值.
已知函数(),在区间上有最大值4,最小值1,设. (1)求的值; (2)不等式在上恒成立,求实数的取值范围; (3)方程有三个不同的实数解,求实数的取值范围.