已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.(Ⅰ)求证:DF⊥平面PAF;(Ⅱ)在棱PA上找一点G,使EG∥平面PFD,当PA=AB=4时,求四面体E-GFD的体积.
已知集合.(1)若中只有一个元素,求的值,并把这个元素写出来;(2)若中至多只有一个元素,求的取值范围.
(1)计算:;(2)设,求的值.
设函数.(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;(2)当a=1时,求函数在区间[t,t+3]上的最大值.
设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2).(1)求双曲线C的方程;(2)求直线AB方程;(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
已知数列的前项和为,且满足. (1)求,的值; (2)求; (3)设,数列的前项和为,求证:.