在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:规定:当产品中的此种元素含量毫克时为优质品.(1)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);(2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数的分布列及数学期望.
.(本小题满分14分) 如图,在边长为10的正三角形纸片ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形纸片后,顶点A正好落在边BC上(设为P),在这种情况下,求AD的最小值.
(本小题满分14分) 如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点. (1)求证:BE∥平面PDF; (2)求证:平面PDF⊥平面PAB; (3)求三棱锥P-DEF的体积.
(本小题满分14分) 已知点A(3,0),B(0,3),C(,),∈. (1)若=,求角的值; (2)若=-1,求的值.
(本小题满分16分) 已知函数的导数是. (1)求时,在x=1处的切线方程。 (2)当时,求证:对于任意的两个不等的正数,有; (3)对于任意的两个不等的正数,若恒成立,求的取值范围.
(本小题满分16分) 已知数列﹛an﹜中,a2=p(p是不等于0的常数),Sn为数列﹛an﹜的前n项和,若对任意的正整数n都有Sn=. (1)证明:数列﹛an﹜为等差数列; (2)记bn=+,求数列﹛bn﹜的前n项和Tn; (3)记cn=Tn-2n,是否存在正整数m,使得当n>m时,恒有cn∈(,3)?若存在,证明你的结论,并给出一个具体的m值;若不存在,请说明理由。