高中数学

(本小题满分12分)已知函数).
(1)试讨论在区间上的单调性;
(2)当时,曲线上总存在相异两点,使得曲线在点处的切线互相平行,求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是增函数,求实数的取值范围
(3)在(2)的条件下,设关于的方程的两个根为,若对任意
,不等式恒成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本大题12分)
已知函数函数的图象与的图象关于直线对称,
(Ⅰ)当时,若对均有成立,求实数的取值范围;
(Ⅱ)设的图象与的图象和的图象均相切,切点分别为,其中
(1)求证:
(2)若当时,关于的不等式恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

抛物线经过点
其中,设函数处取到极值.
(1)用表示
(2) 比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求的解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题分12分)                        
定义.
(Ⅰ)求曲线与直线垂直的切线方程;
(Ⅱ)若存在实数使曲线点处的切线斜率为,且,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(12分)已知函数
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分15分)已知函数
(Ⅰ)求的值;
(Ⅱ)若曲线过原点的切线与函数的图像有两个交点,试求b的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本大题13分)已知函数为常数)
(1)若在区间上单调递减,求的取值范围;
(2)若与直线相切:
(ⅰ)求的值;
(ⅱ)设处取得极值,记点M (,),N(,),P(), , 若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定的最小值,并证明你的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题12分)
已知函数
(1)判断函数上的单调性;
(2)是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)若,求曲线处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得 ,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)当时,求函数的图象在点处的切线方程;
(Ⅱ)讨论函数的单调性;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数(1)若函数处与直线相切;
(1) ①求实数的值;      ②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象过点P(0,2),且在点M处的切线方程为.
(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若的图象在点处的切线方程为,求在区间上的最大值;
(2)当时,若在区间上不单调,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数,其中,a、b为常数,已知曲线在点(2,0)处有相同的切线
(1)求a、b的值,并写出切线的方程;
(2)求函数单调区间与极值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题