高中数学

(1)已知,求函数的最大值和最小值;
(2)要使函数上f (x)恒成立,求a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:在函数的图象上,以为切点的切线的倾斜角为
(Ⅰ)求的值;
(Ⅱ)是否存在最小的正整数,使得不等式对于恒成立?如果存在,请求出最小的正整数;如果不存在,请说明理由;
(Ⅲ)求证:).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知是定义在上的奇函数,且,若恒成立.
(1)判断上是增函数还是减函数,并证明你的结论;
(2)若对所有恒成立,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,在时取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数m的取值范围;
(Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数,且曲线斜率最小的切线与直线平行.求:(1)的值;(2)函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(Ⅰ)设是定义在实数集R上的函数,满足,且对任意实数a,b有
(Ⅱ)设函数满足

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
⑴ 求函数的单调区间;
⑵ 如果对于任意的总成立,求实数的取值范围;
⑶ 设函数. 过点作函数图像的所有切线,令各切点的横坐标构成数列,求数列的所有项之和的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)若函数,则_______________.
(2)化简:=____________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)< .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)解不等式
(2)若.求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)解不等式
(2)对于任意的,不等式恒成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.
(Ⅰ)已知函数,若,求实数的取值范围;
(Ⅱ)已知的部分函数值由下表给出,











 求证:
(Ⅲ)定义集合
请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

进货原价为80元的商品400个,按90元一个售出时,可全部卖出.已知这种商品每个涨价一元,其销售数就减少20个,问售价应为多少时所获得利润最大?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知二次函数f(x)有两个零点0和-2,且f(x)最小值是-1,函数g(x)与f(x)的图像关于原点对称.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在区间[-1,1]上是增函数,求实数λ的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质解答题