为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
(10分)已知数列的前项和,。 (1)求数列的通项公式; (2)记,求
(本小题满分12分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点。 (1)证明:A1B1⊥C1D; (2)当的大小。
(本小题满分12分) 已知函数,. (1)设(其中是的导函数),求的最大值; (2)证明: 当时,求证:; (3)设,当时,不等式恒成立,求的最大值.
(本小题满分12分) 已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为. (1)求椭圆C的方程; (2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
(本小题满分12分) 设数列的前项和为,点在直线上,(为常数,,). (1)求; (2)若数列的公比,数列满足,,,求证:为等差数列,并求; (3)设数列满足,为数列的前项和,且存在实数满足,求的最大值.