为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
(本小题满分10分)已知函数的周期为(Ⅰ)求ω的值和函数的单调递增区间;(Ⅱ)设△ABC的三边、、满足,且边所对的角为,求此时函数的值域.
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求A,ω,φ的值.(2)写出函数f(x)图象的对称中心及单调递增区间.(3)当x∈时,求f(x)的值域.
设两个非零向量e1、e2不共线.如果=e1+e2,2e1+8e2,="3(e1-e2)" ⑴求证: A、B、D三点共线. ⑵试确定实数k,使ke1+e2和e1+ke2共线.
(1)已知tanθ=2,求的值. (2)求的值.