如图,游客在景点处下山至处有两条路径.一条是从沿直道步行到,另一条是先从沿索道乘缆车到,然后从沿直道步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,索道长为,经测量,.
(1)求山路的长;
(2)假设乙先到,为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在什么范围内?
已知函数f(x)=sinx+cosx.
(1)若f(x)=2f(﹣x),求的值;
(2)求函数F(x)=f(x)•f(﹣x)+f2(x)的最大值和单调递增区间.
已知函数.
(Ⅰ)当时,求值;
(Ⅱ)若存在区间(且),使得在上至少含有6个零
点,在满足上述条件的中,求的最小值.
(本小题满分12分)(1)已知角的顶点在原点,始边与轴的非负半轴重合,终边经过点,求的值.
(2)在中,,求的值.
已知向量与,其中.
(1)问向量能平行吗?请说明理由;
(2)若,求和的值;
(3)在(2)的条件下,若,求的值.
求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°.