已知向量与,其中.(1)问向量能平行吗?请说明理由;(2)若,求和的值;(3)在(2)的条件下,若,求的值.
(本小题满分14分)已知为平面上点的坐标.(1)设集合,从集合中随机取一个数作为,从集合中随机取一个数作为,求点在轴上的概率;(2)设,求点落在不等式组:所表示的平面区域内的概率.
(本小题满分12分)设函数 的定义域为A,若命题与有且只有一个为真命题,求实数的取值范围.
已知命题是方程的两个实根,不等式对任意实数恒成立;命题不等式有解,若命题“”为假命题,“”为真命题,求实数的取值范围.
(本题满分14分) 某中学为了解学生的睡眠情况与学习效率的关系,从中抽取20名学生作为样本进行调查.调查的数据整理分组如下表示:
(1)将以上表格补充完整,(2)在给定的坐标系内画出样本的频率分布直方图;(3)为了比较睡眠情况与学习效率的关系,现从睡眠时间在与个小时的学生中抽取2人,问能在这两个睡眠时间内各抽到1个学生的概率是多少?
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1) 求z的值. (2) 用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3) 用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.