(本小题满分14分)已知为平面上点的坐标.(1)设集合,从集合中随机取一个数作为,从集合中随机取一个数作为,求点在轴上的概率;(2)设,求点落在不等式组:所表示的平面区域内的概率.
已知数列满足下列条件: ,(Ⅰ)求的通项公式;(Ⅱ)比较与的大小.
如图,在三棱锥中,,,,。(Ⅰ)平面平面;(Ⅱ)为上的一点.若直线与平面所成的角为,求的长.
在中,内角所对的边分别为已知,(Ⅰ)求角的取值范围;(Ⅱ)若的面积,为钝角,求角的大小.
已知函数,其中为实常数.(Ⅰ)判断在上的单调性;(Ⅱ)若存在,使不等式成立,求的取值范围.
已知数列满足下列条件:(Ⅰ)求的通项公式;(Ⅱ)设的前项和为,求证:对任意正整数,均有