(本小题满分14分)已知为平面上点的坐标.(1)设集合,从集合中随机取一个数作为,从集合中随机取一个数作为,求点在轴上的概率;(2)设,求点落在不等式组:所表示的平面区域内的概率.
若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得: ①若方程有两相异实根,则数列通项可以写成,(其中是待定常数); ②若方程有两相同实根,则数列通项可以写成,(其中是待定常数); 再利用可求得,进而求得. 根据上述结论求下列问题: (1)当,()时,求数列的通项公式; (2)当,()时,求数列的通项公式; (3)当,()时,记,若能被数整除,求所有满足条件的正整数的取值集合.
己知双曲线的中心在原点,右顶点为(1,0),点、Q在双曲线的右支上,点(,0)到直线的距离为1. (1)若直线的斜率为且有,求实数的取值范围; (2)当时,的内心恰好是点,求此双曲线的方程.
如图,已知点是边长为的正三角形的中心,线段经过点,并绕点转动,分别交边、于点、;设,,其中,. (1)求表达式的值,并说明理由; (2)求面积的最大和最小值,并指出相应的、的值.
设全集,关于的不等式()的解集为. (1)分别求出当和时的集合; (2)设集合,若中有且只有三个元素,求实数的取值范围.
如图,是圆柱体的一条母线,过底面圆的圆心,是圆上不与点、重合的任意一点,已知棱,,. (1)求直线与平面所成的角的大小; (2)将四面体绕母线转动一周,求的三边在旋转过程中所围成的几何体的体积.