高中数学

本小题满分12分)(注意:在试题卷上作答无效)

在进行一项掷骰子放球的游戏中规定:若掷出1点或2点,则在甲盒中放一球;否则,在乙盒中放一球。现在前后一共掷了4次骰子,设分别表示甲、乙盒子中球的个数。
(Ⅰ)求的概率;
(Ⅱ)若求随机变量的分布列和数学期望。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

济南市开展支教活动,有五名教师被随机的分到A、B、C三个不同的乡镇中学,且每个乡镇中学至少一名教师,
(1)求甲乙两名教师同时分到一个中学的概率;
(2)求A中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到A中学的人数,求X的分布列和期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某次月考数学第Ⅰ卷共有8道选择题,每道选择题有4个选项,其中只有一个是正
确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数的数学期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
在甲、乙等7个选手参加的一次演讲比赛中,采用抽签的方式随机确定每个选手的演出顺序(序号为1,2,……7),求:
(1)甲、乙两个选手的演出序号至少有一个为奇数的概率;
(2)甲、乙两选手之间的演讲选手个数的分布列与期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

第十一届西博会于2010年10月22日至26日在蓉举行,本届西博会以“绿色改变生活,技术引领发展”为主题。如此重要的国际盛会,自然少不了志愿者这支重要力量,“志愿者,西博会最亮丽的风景线”,通过他们的努力和付出,已把志愿者服务精神的种子播撒到人们心中。某大学对参加了本次西博会的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分。假设该校志愿者甲、乙、丙考核为优秀的概率分别为,他们考核所得的等次相互独立。
(I)求在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率;
(II)求在这次考核中甲、乙、丙三名志愿者所得学分之和为整数的概率。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
某辆载有4位乘客的公共汽车在到达终点前还有3个停靠点(包括终点站),若车上每位乘客在所剩的每一个停靠点下车的概率均为,用表示这4位乘客在终点站下车的人数,求:
(1)随机变量的分布列;
(2)随机变量的数学期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

:某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数 为上的偶函数”为事件,求事件的概率;
(Ⅲ)求的分布列和数学期望。           

来源:2011年广东省广雅金山佛山一中高三2月联考理科 数 学
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

((本小题满分12分) 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,(510,515],由此得到样本的频率分布直方图,如图4所示.
(Ⅰ)根据频率分布直方图,求重量超过500 克的产品数量;
(Ⅱ)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量, 求Y的分布列及数学期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

.(本小题12 分)
有一个箱子内放有3个红球、1个白球、1个黄球,现从箱子里任意取球,每次只取一个,取后不放回.
①求前两次先后取到一个红球和一个白球的概率;
②若取得红球则停止取球,求取球次数的分布列及期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
桌面上有三颗均匀的骰子(6个面上分别标有数字1,2,3,4,5,6)。重复下面的操作,直到桌面上没有骰子:将骰子全部抛掷,然后去掉那些朝上点数为奇数的骰子。记操作三次之内(含三次)去掉的骰子的颗数为X.
(1)求
(2)求X的分布列及期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
某市有A、B两所示范高中响应政府号召,对该市甲、乙两个教育落后地区开展支教活动.经上级研究决定:向甲地派出3名A校教师和2名B校教师,向乙地派出3名A校教师和3名B校教师.由于客观原因,需从拟派往甲、乙两地的教师中各自任选一名互换支教地区.
(Ⅰ)求互换后两校派往两地区教师人数不变的概率;
(Ⅱ)求互换后A校教师派往甲地人数的分布列和数学期望

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)
一个袋中装有个形状大小完全相同的小球,球的编号分别为.
(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
(Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有次抽到号球的概率;
(Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在一个盒子中有个球,其中2个球的标号是不同的偶数,其余n个球的标号是不同的奇数。甲乙两人同时从盒子中各取出2个球,若这4个球的标号之和为奇数,则甲胜;若这4个球的标号之和为偶数,则乙胜。规定:胜者得2分,负者得0分。
(I)当时,求甲的得分的分布列和期望;
(II)当乙胜概率为的值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为,记
(Ⅰ)求随机变量的分布列和数学期望;
(Ⅱ)设“函数在区间上有且只有一个零点”为事件,求事件发生的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)一射击测试每人射击三次,每击中目标一次记10分。没有击中记0分,某人每次击中目标的概率为
(I)求此人得20分的概率;(II)求此人得分的数学期望与方差。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学随机思想的发展解答题