:某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积. (Ⅰ)求学生小张选修甲的概率; (Ⅱ)记“函数 为上的偶函数”为事件,求事件的概率; (Ⅲ)求的分布列和数学期望。
已知函数,. (1)求函数的最小值; (2)若,证明:当时,.
过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限. (1)求抛物线C的方程及点M的坐标; (2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,如果点M在直线AB的上方,求面积的最大值.
商场销售的某种饮品每件售价为36元,成本为20元.对该饮品进行促销:顾客每购买一件,当即连续转动三次如图所示转盘,每次停止后指针向一个数字,若三次指向同一个数字,获一等奖;若三次指向的数字是连号(不考虑顺序),获二等奖;其他情况无奖.(1)求一顾客一次购买两件该饮品,至少有一件获得奖励的概率;(2)若奖励为返还现金,一等奖奖金数是二等奖的2倍,统计表明:每天的销售y(件)与一等奖的奖金额x(元)的关系式为,问x设定为多少最佳?并说明理由.
在斜三棱柱中,平面平面ABC,,,. (1)求证:; (2)若,求二面角的余弦值.
如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,.(1)当时,求的大小;(2)求的面积S的最小值及使得S取最小值时的值.