过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限. (1)求抛物线C的方程及点M的坐标; (2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,如果点M在直线AB的上方,求面积的最大值.
设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点). (Ⅰ)求椭圆的方程; (Ⅱ)设是椭圆上的任一点,为圆的任一条直径,求的最大值.
已知是正数组成的数列,,且点在函数的图象上. (1)求数列的通项公式; (2)若列数满足,,求证:
在三棱锥中,和都是边长为的等边三角形,,分别是的中点. (1)求证:平面; (2)求证:平面⊥平面; (3)求三棱锥的体积.
为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8. (1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数; (2)求调查中随机抽取了多少个学生的百米成绩; (3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
已知平面直角坐标系上的三点,,(),且与共线. (1)求; (2)求的值.