(本小题满分12分)已知函数(1)设两曲线与有公共点,且在公共点处的切线相同,若,试建立关于的函数关系式;(2)在(1)的条件下求的最大值;(3)若时,函数在(0,4)上为单调函数,求的取值范围。
如图:三棱柱中,,,侧棱底面,为的中点,为边上的动点。 (1)若为中点,求证:平面 (2)若,求四棱锥的体积。
如图:正方体的棱长为1,点分别是和的中点 (1)求证: (2)求异面直线与所成角的余弦值。
已知圆满足以下三个条件:(1)圆心在直线上,(2)与直线相切,(3)截直线所得弦长为6。求圆的方程。
求通过两条直线和的交点,且距原点距离为1的直线方程。
已知定义域为的函数是奇函数. (Ⅰ)求实数的值; (Ⅱ)判断函数的单调性; (Ⅲ)若对任意的,不等式恒成立,求的取值范围.