(本小题满分12分)已知向量(1)若的值;(2)记,在中,角A、B、C的对边分别是,且满足,求的取值范围。
在数列中,(Ⅰ)求数列的前项和;(Ⅱ)若存在,使得成立,求实数的最小值.
如图1,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图2).(Ⅰ)求证:OF//平面ACD;(Ⅱ)在上是否存在点,使得平面平面ACD?若存在,试指出点的位置;若不存在,请说明理由.
已知点是函数图象上的任意两点,若时,的最小值为,且函数的图像经过点.(Ⅰ)求函数的解析式;(Ⅱ)在中,角的对边分别为,且,求的取值范围.
某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛.其中一道题是连线题,要求将3种不同的消防工具与它们的用途一对一连线,规定:每连对一条得2分,连错一条扣1分,参赛者必须把消防工具与用途一对一全部连起来.(Ⅰ)设三种消防工具分别为,其用途分别为,若把连线方式表示为,规定第一行的顺序固定不变,请列出所有连线的情况;(Ⅱ)求某参赛者得分为0分的概率.
将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?