.(本小题12 分)有一个箱子内放有3个红球、1个白球、1个黄球,现从箱子里任意取球,每次只取一个,取后不放回.①求前两次先后取到一个红球和一个白球的概率;②若取得红球则停止取球,求取球次数的分布列及期望.
已知曲线及点,求过点的曲线的切线方程.
已知函数判断f(x)在x=1处是否可导?
是否存在这样的实数k,使得关于x的方程2+(2k-3)-(3k-1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k的取值范围;如果没有,试说明理由.
已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(),试证明: (1)f(x)为奇函数; (2)f(x)在(-1,1)上单调递减.
判断函数的奇偶性.