有一批产品,其中件是正品,件是次品,有放回的任取件,若表示取到次品的件数,则
A. | B. | C. | D. |
在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X的概率分布以及随机变量X数学期望;(本题结果用分数表示即可)
一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋.
(1)求该人在4次投掷中恰有三次投入红袋的概率;
(2)求该人两次投掷后得分ξ的数学期望Eξ.
(本小题满分12分)已知广东省某校高三(1)班有名学生,从中按照系统抽样的方法抽取名学生.
(1)若第组抽出的号码为,写出所有被抽出学生的号码;
(2)分别统计这名学生某高校自主招生考试成绩(满分:分),获得成绩数据的茎叶图如图所示,现从这名学生中随机抽取名学生成绩,其中有名学生的成绩是超过的,求的分布列与期望.
一个袋中装有10个红球,20个白球,这些球除颜色外完全相同,一次从中摸出5个球,随机变量表示取到的红球数,服从超几何分布,则=
(用组合数作答)
受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:
品牌 |
甲 |
乙 |
|||
首次出现故 障时间x(年) |
0<x≤1 |
1<x≤2 |
x>2 |
0<x≤2 |
x>2 |
轿车数量(辆) |
2 |
3 |
45 |
5 |
45 |
每辆利润 (万元) |
1 |
2 |
3 |
1.8 |
2.9 |
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率.
(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列.
(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.
我市在夜明珠与黄柏河交汇形成的平湖水面上修建”三峡游轮中心”.其中有小型游艇出租给游客游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为,;租用2小时以上且不超过3小时的概率分别为,,且两人租用的时间都不超过4小时.
(Ⅰ)求甲、乙两人所付费用相同的概率;
(Ⅱ)设甲、乙两人所付的费用之和为随机变量,求的分布列与数学期望.
(本小题满分12分)某地宫有三个通道,进入地宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出地宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完地宫为止。令表示走出地宫所需的时间。
(1)求的分布列;
(2)求的数学期望。
某超市有奖促销,抽奖规则是:每消费满50元,即可抽奖一次.抽奖方法是:在不透明的盒内装有标着1,2,3,4,5号码的5个小球,从中任取1球,若号码大于3就奖励10元,否则无奖,之后将球放回盒中,即完成一次抽奖,则某人抽奖2次恰中20元的概率为___________;若某人消费200元,则他中奖金额的期望是_________元.
某市有一个玉米种植基地.该基地的技术员通过种植实验发现,一种品质优良的玉米种子每粒发芽的概率都为0.95,现在该种植基地播种了10000粒这种玉米种子,对于没有发芽的种子,每粒需再播种1粒,补种的种子数记为,则的数学期望 .
(本小题满分12分)深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
申请意向 年龄 |
摇号 |
竞价(人数) |
合计 |
|
电动小汽车(人数) |
非电动小汽车(人数) |
|||
30岁以下 (含30岁) |
50 |
100 |
50 |
200 |
30至50岁 (含50岁) |
50 |
150 |
300 |
500 |
50岁以上 |
100 |
150 |
50 |
300 |
合计 |
200 |
400 |
400 |
1000 |
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为,求的分布列和数学期望.
已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.
X |
-1 |
0 |
1 |
2 |
P |
a |
b |
c |
2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:
甲系列:
动作 |
K |
D |
||
得分 |
100 |
80 |
40 |
10 |
概率 |
乙系列:
动作 |
K |
D |
||
得分 |
90 |
50 |
20 |
0 |
概率 |
现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX