.(本小题满分12分)
若盒中装有同一型号的灯泡共只,其中有只合格品,只次品.
( 1 ) 某工人师傅有放回地连续从该盒中取灯泡次,每次取一只灯泡,求“次中次取到次品”的概率;
( 2 ) 某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求“成功更换会议室的已坏灯泡前取出的次品灯泡只数”的分布列和数学期望.
某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以a1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的期望为________元.
(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物次,最后落入袋或袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是
(Ⅰ)分别求出小球落入袋和袋中的概率;
(Ⅱ)在容器的入口处依次放入个小球,记为落入袋中的小球个数,求的分布列和数学期望.
在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率q1为0.25,在B处的命率为q2.该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为
ξ |
0 |
2 |
3 |
4 |
5 |
P |
0.03 |
P1 |
P2 |
P3 |
P4 |
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
若随机变量X~B(100,p),X的数学期望E(X)=24,则p的值是( )
A. | B. | C. | D. |
我市在夜明珠与黄柏河交汇形成的平湖水面上修建”三峡游轮中心”.其中有小型游艇出租给游客游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为,;租用2小时以上且不超过3小时的概率分别为,,且两人租用的时间都不超过4小时.
(Ⅰ)求甲、乙两人所付费用相同的概率;
(Ⅱ)设甲、乙两人所付的费用之和为随机变量,求的分布列与数学期望.
(本小题满分12分)某地宫有三个通道,进入地宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出地宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完地宫为止。令表示走出地宫所需的时间。
(1)求的分布列;
(2)求的数学期望。
某超市有奖促销,抽奖规则是:每消费满50元,即可抽奖一次.抽奖方法是:在不透明的盒内装有标着1,2,3,4,5号码的5个小球,从中任取1球,若号码大于3就奖励10元,否则无奖,之后将球放回盒中,即完成一次抽奖,则某人抽奖2次恰中20元的概率为___________;若某人消费200元,则他中奖金额的期望是_________元.
某市有一个玉米种植基地.该基地的技术员通过种植实验发现,一种品质优良的玉米种子每粒发芽的概率都为0.95,现在该种植基地播种了10000粒这种玉米种子,对于没有发芽的种子,每粒需再播种1粒,补种的种子数记为,则的数学期望 .
(本小题满分12分)深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
申请意向 年龄 |
摇号 |
竞价(人数) |
合计 |
|
电动小汽车(人数) |
非电动小汽车(人数) |
|||
30岁以下 (含30岁) |
50 |
100 |
50 |
200 |
30至50岁 (含50岁) |
50 |
150 |
300 |
500 |
50岁以上 |
100 |
150 |
50 |
300 |
合计 |
200 |
400 |
400 |
1000 |
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为,求的分布列和数学期望.
已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.
X |
-1 |
0 |
1 |
2 |
P |
a |
b |
c |
2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:
甲系列:
动作 |
K |
D |
||
得分 |
100 |
80 |
40 |
10 |
概率 |
乙系列:
动作 |
K |
D |
||
得分 |
90 |
50 |
20 |
0 |
概率 |
现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX