高中数学

.(本小题满分12分)
若盒中装有同一型号的灯泡共只,其中有只合格品,只次品.
( 1 ) 某工人师傅有放回地连续从该盒中取灯泡次,每次取一只灯泡,求“次中次取到次品”的概率;
( 2 ) 某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求“成功更换会议室的已坏灯泡前取出的次品灯泡只数的分布列和数学期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以a1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的期望为________元.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

  甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数,方差,则成绩较稳定的同学是      (填“甲”或“乙”)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物次,最后落入袋或袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是

(Ⅰ)分别求出小球落入袋和袋中的概率;
(Ⅱ)在容器的入口处依次放入个小球,记为落入袋中的小球个数,求的分布列和数学期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率q1为0.25,在B处的命率为q2.该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为

ξ
0
2
3
4
5
P
0.03
P1
P2
P3
P4

(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若随机变量X~B(100,p),X的数学期望E(X)=24,则p的值是(  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知随机变量ξ~B(6,),则E(2ξ)=     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

我市在夜明珠与黄柏河交汇形成的平湖水面上修建”三峡游轮中心”.其中有小型游艇出租给游客游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为;租用2小时以上且不超过3小时的概率分别为,且两人租用的时间都不超过4小时.
(Ⅰ)求甲、乙两人所付费用相同的概率;
(Ⅱ)设甲、乙两人所付的费用之和为随机变量,求的分布列与数学期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)某地宫有三个通道,进入地宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出地宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完地宫为止。令表示走出地宫所需的时间。
(1)求的分布列; 
(2)求的数学期望。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知随机变量,若,则分别是( )

A.6和2.4 B.2和2.4 C.2和5.6 D.6和5.6
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某超市有奖促销,抽奖规则是:每消费满50元,即可抽奖一次.抽奖方法是:在不透明的盒内装有标着1,2,3,4,5号码的5个小球,从中任取1球,若号码大于3就奖励10元,否则无奖,之后将球放回盒中,即完成一次抽奖,则某人抽奖2次恰中20元的概率为___________;若某人消费200元,则他中奖金额的期望是_________元.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某市有一个玉米种植基地.该基地的技术员通过种植实验发现,一种品质优良的玉米种子每粒发芽的概率都为0.95,现在该种植基地播种了10000粒这种玉米种子,对于没有发芽的种子,每粒需再播种1粒,补种的种子数记为,则的数学期望    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:

申请意向
年龄
摇号
竞价(人数)
合计
电动小汽车(人数)
非电动小汽车(人数)
30岁以下
(含30岁)
50
100
50
200
30至50岁
(含50岁)
50
150
300
500
50岁以上
100
150
50
300
合计
200
400
400
1000

 
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为,求的分布列和数学期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.

X
-1
0
1
2
P
a
b
c

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:
甲系列:

动作
K
D
得分
100
80
40
10
概率




乙系列:

动作
K
D
得分
90
50
20
0
概率




   现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学随机思想的发展试题