.(本小题满分12分)若盒中装有同一型号的灯泡共只,其中有只合格品,只次品.( 1 ) 某工人师傅有放回地连续从该盒中取灯泡次,每次取一只灯泡,求“次中次取到次品”的概率;( 2 ) 某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求“成功更换会议室的已坏灯泡前取出的次品灯泡只数”的分布列和数学期望.
已知直线过点,圆:. (1)求截得圆弦长最长时的直线方程; (2)若直线被圆N所截得的弦长为,求直线的方程.
如图,在河的对岸可以看到两个目标物M,N,但不能到达,在河岸边选取相距40米的两个目标物P,Q两点,测得,,,,试求两个目标物M,N之间的距离.
(满分12分) 如图,在正方体中,E、F、G分别为、、的中点,O为与的交点, (1)证明:面 (2)求直线与平面所成角的正弦值.
(满分12分) 求过两直线和的交点且与直线垂直的直线方程.
(满分10分) 已知集合,,求.